• Title/Summary/Keyword: Frequency Divider

Search Result 236, Processing Time 0.025 seconds

A Low-Jitter 2.5V 300MHZ CMOS PLL for Frequency Synthesizer (주파수 동기를 위한 저 잡음 2.5V 300Mhz CMOS PLL)

  • 권진규;이종화;조상복
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1189-1192
    • /
    • 2003
  • 본 논문에서는 노이즈를 고려한 PLL를 설계하였다. 30Mhz∼300Mhz으로 동작하는 VCO를 설계하였다. VCO를 평균 250Mhz으로 동작하도록 하고 reference 주파수, 62.5Mhz로 locking하는 PLL를 설계를 하였다. 300Mhz PLL의 기본적인 구조로 PLL은 PFD(Phase frequency detector), CP(Charge Pump), LF(Loop filter), VCO(Voltage controlled Oscillator)와 Divider로 구성되었다. PFD과 CP는 Dead Zone를 줄이고, 큰 gm를 가지도록 설계를 하였다. PLL에서 가장 중요한 블락인, VCO는 One Chip으로 설계하기 위해 Ring Oscillator로 설계를 하였다. 2.5V 62.5MHZ의 외부 신호를 300MHZ을 발진하는 VCO에서 분주하여 clock synthesizer를 설계하였다. 본 논문은 Hynix0.25공정을 사용하여 설계를 하였으며, 2.5V의 공급 전원을 사용하였다.

  • PDF

Design of High Frequency Resonant Inverter Type X-Ray Generator (고주파 공진형 인버터식 X선 발생장치의 설계)

  • Lee, Seong-Gil;Park, Su-Gang;Baek, Hyeong-Rae;Jeong, Su-Bok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.34-39
    • /
    • 2002
  • Most X-ray generator had been used do rectifier type transformer high tension generator which is supplied in a clinical diagnosis. But it is difficult to miniaturize and become light weight. Also, because the ripple rate of tube voltage is high, X-ray generating efficiency is very low. Therefore, it is supplied gradually from abroad being developed high tension generator for inverter type X-ray generator which use semi-conductor switching element for electric power that have high speed switching ability to solved these problem. But, semi-conductor element of big capacity are used by X-ray tube's big consumption power and diffusion is difficult in the small size hospital because production cost is ascending by doing digital control through DSP and product price becomes expensive. Therefore, in this paper, design and manufactured CR type voltage divider for feedback control of tube voltage of high frequency resonance type inverter and high tension transformer for high frequency to apply economical diffusion type X-ray generator which have wide output voltage and load extent. It is Proved do X-ray generator and stability of X-ray tube's output characteristics through an experiment.

A Study on the new structure Voltage Controlled Hair-pin Resonator Oscillator using parallel feedback of second-harmonic (2차 고조파의 병렬 궤환을 이용한 새로운 구조의 전압 제어 Hair-pin 공진 발진기에 관한 연구)

  • 민준기;하성재;이근태;안창돈;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.530-534
    • /
    • 2002
  • In the thesis, For improving the Stability of VCHRO(Voltage Controlled Hair-pin Resonator Oscillator) the new structure using the parallel feedback of the second harmonic is proposed for self-phase locking effect. This module is composed of wilkinson divider, frequency doubler, directional coupler, and bandpass filter using a hair-pin resonator, which are integrated into miniaturized hybrid circuit. The module exhibits output power of 2.5 dBm at 19.5 GHz, -29.83 dBc fundamental frequency suppression and -76.52 dBc/Hz phase noise at 10 kHz offset frequency from carrier of center frequency 19.5 GHz.

Dual-Band Stop Filter Using Metamaterial TLs (Metamaterial 전송선을 이용한 이중 대역 저지 필터)

  • Oh, Hee-Seok;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.124-128
    • /
    • 2009
  • This raper proposes a dual-bandstop filter, which is based on a metamaterial transmission line using the composite right/left-handed (CRLH) and dual composite right/left-handed (D-CRLH) structures. The metamaterial structure is used for miniaturization and dual-bandstop operation at the TDMB frequency range (195 MHz) and DVB-T/H frequency range (670 MHz). The size of the proposed filter is $30{\times}15\;mm$, and the -10 dB bandstop fractional bandwidth is approximately 73 % and 50 % at each frequency, respectively.

The Design of New Phase Noise Dielectric Resonator Parallel Feedback Oscillator (새로운 구조의 저 위상잡음 유전체 공진 병렬 궤환 발진기)

  • 전광일;박진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.947-954
    • /
    • 1999
  • A new low phase noise Dielectric Resonator Parallel Feedback Oscillator(DRPFO) that is proposed in this paper has a simple structure so that it can be fabricated in low cost and with high performance. The proposed DRPFO is in a feedback loop oscillator configuration, which is composed of a low noise amplifier, a power amplifier, a power attenuator, a power divider and a parallel resonator feedback element that consists of a dielectric resonator coupled with two microstrip lines. The measured phase noise of DRPFO was less than -81 dBc/Hz at offset frequency 1 kHz of 10.75 GHz carrier frequency, and the frequency stability of DRPFO was less than $\pm$200 kHz over the temperature range of -40$^{\circ}$C to +60$^{\circ}$C.

  • PDF

Design of High Frequency Resonant High-tension Transformer in Inverter Type X-Ray Generator (인버터식 X선발생장치용 고주파 공진형 고압변압기 등의 설계)

  • Lee, Seong-Kil;Choi, Sung-Kwan
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.5-11
    • /
    • 2001
  • Most of X-ray generator had used rectifier type transformer with high tension generator which is supplied in a clinical diagnosis. Because the ripple rate of tube voltage is high, X-ray generating efficiency is very low. In these days, high tension generator for inverter type X-ray generator is being supplied from a broad which uses semi-conductor switching element for the electric power that have a high speed switching ability to solve these problem. But, semi-conductor element with large capacity is used with X-ray tube's large consumption power and diffusion is difficult in the small size hospital because production cost is going up by doing digital control through DSP. Therefore, this paper designed and manufactured CR type voltage divider for feedback control of tube voltage with high frequency resonance type inverter and for high tension transformer with high frequency. It was to make economical diffusion type X-ray generator which has wide output voltage and load extent. It was preyed that the X-ray generator had the stability of X-ray tube's output characteristics.

  • PDF

Design of a 960MHz CMOS PLL Frequency Synthesizer with Quadrature LC VCO (960MHz Quadrature LC VCO를 이용한 CMOS PLL 주파수 합성기 설계)

  • Kim, Shin-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.61-67
    • /
    • 2009
  • This paper reports an Integer-N phase locked loop (PLL) frequency synthesizer which was implemented in a 250nm standard digital CMOS process for a UHF RFID wireless communication system. The main blocks of PLL have been designed including voltage controlled oscillator, phase frequency detector, and charge pump. The LC VCO has been used for a better noise property and low-power design. The source and drain juntions of PMOS transistors are used as the varactor diodes. The ADF4111 of Analog Device has been used for the external pre-scaler and N-divider to divide VCO frequency and a third order RC filter is designed for the loop filter. The measured results show that the RF output power is -13dBm with 50$\Omega$ load, the phase noise is -91.33dBc/Hz at 100KHz offset frequency, and the maximum lock-in time is less than 600us from 930MHz to 970MHz.

Phase Noise Prediction of Phase-Locked Loop frequency Synthesizer for Satellite Communication System (위성통신 시스템용 위상 고정 루프 주파수 합성기의 위상 잡음 예측 모델)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.777-786
    • /
    • 2003
  • The phase noise characteristics of the phase-locked loop frequency synthesizer were predicted based on the analysis for phase noise contribution of noise sources. The proposed phase noise model in this paper more accurately predicts the phase noise spectrum of frequency synthesizer. To accurately model the phase noise contribution of noise sources in frequency synthesizer, the phase noise sources were analyzed via modeling of the frequency divider and phase noise components using Leeson model for reference signal source and VCO. The phase noise transfer functions to VCO from noise sources were analyzed by superposition theory and linear operation of phase-locked loop. To evaluate the phase noise prediction model, the frequency synthesizers were fabricated and were evaluated by measured data and prediction data.

Design of a High Power Asymmetric Doherty Amplifier with a Linear Dynamic Range Characteristic (선형적인 동적 영역 특성을 갖는 고출력 비대칭 도허티 전력 증폭기의 설계)

  • Lee Ju-Young;Kim Ji-Yeon;Lee Dong-Heon;Kim Jong-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.538-545
    • /
    • 2006
  • In this paper, an asymmetric high power extended Doherty amplifier for WCDMA base-station applications is presented. The amplifier has an extended peak efficiency over 9 dB of output power and a linear dynamic range characteristic. To realize the peak efficiency extension and linear dynamic range characteristic, a two times larger peaking device compared to the main device, and an unequal power divider are used. From the experimental results of 1FA WCDMA signal, this amplifier has an efficiency of 31 % and an ACLR of -35 dBc is achieved at 9 dB back-off from P1 dB.

Study on Folded TEM Horn Antennas for 70 kV Impulse (70 kV 임펄스용 접힌 TEM 혼 안테나에 관한 연구)

  • Lee, Jin-Seong;Byun, Joon-Ho;Ahn, Young-Joon;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.95-100
    • /
    • 2007
  • In this paper, a twice folded TEM horn antenna for 70 kV impulse high power system is proposed. The length reduction of 50 % is achieved by folding a conventional TEM horn antenna twice. The array elements are fed by the stripline power divider using the Chebyshev transformer. The power divider feeds four TEM horn antenna elements with an in-phased uniform power, and it covers a wide bandwidth ($150\;MHz\;{\sim}\;768\;MHz$, VSWR<2.0). Considering the air breakdown at peak 70 kV impulse, the proposed antenna maintains the 25 mm gaps between conducting plates. The dimension of the twice folded horn antenna is $1730\;{\times}\;1600\;{\times}\;300$ (mm3), and the operating frequency is from 152 MHz to 750 MHz under 10 dB return loss. The peak gains are measured from 6.77 dBi to 10.70 dBi at $400\;MHz\;{\sim}\;750\;MHz$.

  • PDF