• Title/Summary/Keyword: Frequency Converter

Search Result 1,877, Processing Time 0.03 seconds

Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition (전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어)

  • Ahn, Chang-Heon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.

A Contact-less Power Supply using LLC resonant converter for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 LLC 직렬공진컨버터 적용 무접점 전원장치)

  • Lee, H.K.;Lee, G.S.;Kang, S.I.;Kong, Y.S.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.347-350
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer. Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without any auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transfonner are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

  • PDF

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

DC Power Supply Driving Discharge Lamp Using PWM DC-DC Converter of Single- Phase Shift Soft Switching (위상 천이 소프트 스위칭 PWM DC-DC 컨버터를 이용한 방전등 구동용 직류 전원장치)

  • Lee, Hyun-Woo;Jung, Sang-Hwa;Kwon, Soon-Kurl;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.100-106
    • /
    • 2005
  • Generally, high frequency switching DC-DC converter that DC power supply for discharge lamp drive to generate ultraviolet rays(UV) is acted by hard switching mode is used. Therefore in this paper, wish to mix first existent first-side status phase shift PWM DC-DC converter and posing secondary-side status phase shift PWM DC-DC converter by high frequency link DC-DC converter that use soft switching circuit technology and develop DC power supply for discharge lamp drive. DC power supply driving Discharge lamp proposed describe validity through simulation and an experiment.

Series Resonant ZCS- PFM DC-DC Converter using High Frequency Transformer Parasitic Inductive Components and Lossless Inductive Snubber for High Power Microwave Generator

  • Kwon, Soon-Kurl;Saha, Bishwajit;Mun, Sang-Pil;Nishimura, Kazunori;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.18-25
    • /
    • 2009
  • Conventional series-resonant pulse frequency modulation controlled DC-DC high power converters with a high-frequency transformer link which is designed for driving the high power microwave generator has the problem of hard switching commutation at turn-on and turn-off of active power switching devices. This problem is due to the influence of the magnetizing current of the high-frequency transformer. This paper presents a novel prototype for a high-frequency transformer using parasitic parameters with a lossless inductive snubber and a series resonant capacitor assisted series-resonant zero current switching pulse frequency modulated DC-DC power converter, which is designed using a high power magnetron for microwave ovens. In order to implement a complete and efficient soft switching commutation, the performance of the new converter topology is practically confirmed and evaluated in the prototype of a power microwave generator.

Impedance-Based Stability Analysis of DC-DC Boost Converters Using Harmonic State Space Model

  • Park, Bumsu;Heryanto, Nur A.;Lee, Dong-Choon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.255-261
    • /
    • 2021
  • This paper proposes impedance-based stability analysis of DC-DC boost converters, where a harmonic state space (HSS) modeling technique is used. At first, the HSS model of the boost converter is developed. Then, the closed-loop output impedance of the converter is derived in frequency domain using small signal modeling including frequency couplings, where harmonic transfer function (HTF) matrices of the open-loop output impedance, the duty-to-output, and the voltage controller are involved. The frequency response of the output impedance reveals a resonance frequency at low frequency region and frequency couplings at sidebands of switching frequency which agree with the simulation and experimental result.

Study on the resonant HF DC/DC Converter for the weight reduction of the Auxiliary Power Supply of MAGLEV (자기부상열차 보조전원장치 경량화를 위한 공진형 HF DC/DC Converter 연구)

  • Lee, Kyoung-Bok;Lim, Ji-Young;Jo, Jeong-Min;Kim, Jin-Su;Han, Young-Jae;Choi, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1825-1831
    • /
    • 2011
  • One of the major trends in traction power electronics is increasing the switching frequencies. The advances in the frequency elevation have made it possible to reduce the total size and weight of the passive components such as capacitors, inductors and transformers in the DC/DC converter and hence to increase the power density. The traction dynamic performance is also improved. This document describes several aspects relating to the design of resonant DC/DC converter operating at high frequency(10KHz) and the converter topologies and the control method of MAGLEV, which result in soft switching, are discussed.

  • PDF

A Hybrid PWM-Resonant DC-DC Converter for Electric Vehicle Battery Charger Applications

  • Lee, Il-Oun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1158-1167
    • /
    • 2015
  • In this paper, a new hybrid DC-DC converter is proposed for electric vehicle 3.3 kW on-board battery charger applications, which can be modulated in a phase-shift manner under a fixed frequency or frequency variation. By integrating a half-bridge (HB) LLC series resonant converter (SRC) into the conventional phase-shift full-bridge (PSFB) converter with a full-bridge rectifier, the proposed converter has many advantages such as a full soft-switching range without duty-cycle loss, zero-current-switching operation of the rectifier diodes, minimized circulating current, reduced filter inductor size, and better utilization of transformers than other hybrid dc-dc converters. The feasibility of the proposed converter has been verified by experimental results under an output voltage range of 250-420V dc at 3.3 kW.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.