• Title/Summary/Keyword: Frequency Calculation

Search Result 1,110, Processing Time 0.026 seconds

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

High Frequency Impedance Calculation of Grounding Meshes Installed at Power Substations (전력용 변전소에 설치된 메쉬 접지망의 고주파 임피던스 계산)

  • Han, Poong;Choi, Chang-Hyek
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1578-1582
    • /
    • 1998
  • The ground potential rise generated by the switching surge or lightning stroke may be dangerous to personnel and cause damage to electronic control parts. For a first step to the transient performance analysis. high frequency impedances of grounding grids have been calculated and discussed. Grounding grids include 7 square grids from $10m{\times}10m$ to $80m{\times}80m$. The high frequency current was injected into the center and a corner of the grounding grid. The calculation results indicate that the impedance of the grounding grid is significantly influenced by frequency and the point of injection of the current. and the effective radius of a large grounding grid may be represented in $15{\sim}20m$.

  • PDF

Frequency Domain Methods for Demosaicking of Single-Chip RGB/NIR Image Sensors

  • Jeong, Kil-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.25-30
    • /
    • 2017
  • In this paper, We proposed an effective demosaicking method for single chip RGB-NIR sensors to recover RGB and NIR images. As the method operates in the spatial frequency domain, the frequency domain characteristics of the sampled CFA data are investigated. Using the luminance signal in the frequency domain and the chrominance signals are processed separately with different filters. The simulated images using the real images are compared with other state-of-art methods. As a result, the proposed demosaicking method resulted an effective calculation by a single processing which the existing alternating projection method requires repeated calculation.

Numerical Calculation of Longitudinal Current Distribution in Grounding Electrode for Analyzing the Grounding Impedance (접지임피던스 분석을 위한 접지전극의 전류분포 수치계산)

  • Cho, Sung-Chul;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • The current distribution passing through grounding electrode is required for calculating an impedance of grounding electrode using the electromagnetic field model. In this paper the numerical calculation for currents passing through a grounding electrode as a function of frequency was given. The proposed approach is based on the wire antenna model(AM) in the frequency domain. The Pocklington's equation driven from the wire antenna theory was numerically calculated by the Galerkin's method. The triangle function was applied to both the basis function and the weighting function. The current distribution of a horizontal ground electrode was simulated in MATLAB. Also these results were compared with the data obtained from the CDEGS HIFREQ calculation.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.125-130
    • /
    • 2005
  • This paper suggests an efficient method of protection ratio calculation and shows some calculated results applicable to frequency coordination in microwave relay system networks, and the net filter discrimination (NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively, In addition, NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

  • PDF

Computation of Zwicker's loudness and design optimization with Pad$\acute{e}$ approximation (Pad$\acute{e}$ 근사법을 이용한 Zwicker 라우드니스의 계산과 최적화)

  • Kook, Jung-Hwan;Jensen, Jakob S.;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.279-284
    • /
    • 2011
  • The calculation of Zwicker's loudness which is needed for multiple frequency response with a fine frequency resolution using the finite element (FE) procedure usually requires significant computation time since a numerical solution must be obtained for each considered frequency. Furthermore, if the analysis is the basis for an iterative optimization procedure this approach imposes high computational cost. In this work, we present an efficient approach for obtaining Zwicker's loudness via the Pad$\acute{e}$ approximants and applying in an acoustical topology optimization procedure. The paper is focused on an efficient and accurate calculation of Zwicker's loudness, design sensitivity analysis, and the acoustical topology optimization method by using Pad$\acute{e}$ approximants. The paper compares the efficient algorithm to results obtained by a standard FEM. Comparison are made both in terms of accuracy and in terms of CPU-times needed for the calculation.

  • PDF

Forecasting Methodology of the Radio Spectrum Demand (무선자원 서비스 수요예측 방안)

  • Kim Jeom-Gu;Jang Hee-Seon;shin Hyun-Cheul
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.173-183
    • /
    • 2002
  • In this paper, we propose an efficient forecasting methodology of the mid and long-term frequency demand in Korea. The methodology consists of the following three steps: classification of basic service group, calculation of effective traffic, and frequency forecasting. Based on the previous studies, we classify the services into wide area mobile, short range radio, fixed wireless access and digital video broadcasting in the step of the classification of basic service group. For the calculation of effective traffic, we use the measures of erlang and bps. The step of the calculation of effective traffic classifies the user and basic application, and evaluates the effective traffic. Finally, in the step of frequency forecasting, different methodology will be proposed for each service group.

  • PDF

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

Monte-Carlo Calculation of Single-Electron Inverter Transient Characteristics (몬테-칼로 방법을 이용한 단일전자인버터 회로의 과도특성 계산)

  • 정용익;유윤섭;황성우
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.326-329
    • /
    • 2000
  • In this paper, a complete methodology of incorporating the displacement current for the calculation of a single electron inverter characteristics has been devised. It has been implemented for the calculation of the low frequency noise spectrum in a single electron inverter in the framework of Monte-Carlo method. Our new methodology opens up a systematic way of analyzing transient behaviors of single electron circuits.

  • PDF