• Title/Summary/Keyword: Frequency Attenuation

Search Result 749, Processing Time 0.034 seconds

Electromagnetic Wave Absorber of Laminated Ferrite and Dielectrics (페라이트-유전체 적층형 전파흡수체)

  • 김경용;김왕섭;주윤돈;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.483-487
    • /
    • 1991
  • Ferrite electromagnetic wave absorber whose attenuation ability are mainly relied on their magnetic loss, has been used in relatively narrow wave frequency ranges. In this study, we tried to produce a wide-range electromagnetic wave absorber by laminating sintered ferrite (Mn0.07Ni0.28Zn0.65Fe2O4) and dielectrics (Cordierite). We also investigated effects of dielectric constant and thickness on the attenuation behavior of the absorber. Applicable band width, in which the attenuation is greater than 20 dB can be widened from 100∼700 MHz of ferrite alone to 100∼900MHz by employing the laminated structure. Thickness of dielectrics to achieve wide-range application decreased as the dielectric constant increased.

  • PDF

Numerical Evaluation of Phase Velocity and Attenuation of Ultrasonic Waves in Fiber-Reinforced Composites Using the Mass-Spring-Dashpot Lattice Model

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.483-495
    • /
    • 2008
  • The paper presents a numerical study to evaluate the phase velocities and attenuations of the average longitudinal and shear ultrasonic waves resulting from multiple scattering in fiber-reinforced composites. A computational procedure developed in this work is first used to produce a random, yet largely even distribution of fibers. Both the viscoelastic epoxy matrix and lossless randomly distributed graphite fibers are modeled using the mass-spring-dashpot lattice model, with no damping for the latter. By numerically simulating ultrasonic through-transmission tests using this direct model of composites, phase velocities and attenuations of the longitudinal and shear waves through the composite are found as functions of frequency or fiber concentration. The numerical results are observed to generally agree with the corresponding results in the literature. Discrepancies found in some detail aspects, particularly in the attenuation results, are also addressed.

Identification of the Shear Velocities of Near Surface Soils Using Torsional Guided Waves (비틀림 유도파를 이용한 근지표면 전단속도 규명)

  • Park, Kyung-Jo;Oh, Hyung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.771-776
    • /
    • 2012
  • A technique is presented that uses a circular waveguide for the measurement of the bulk shear(S-wave) velocities of unconsolidated, saturated media, with particular application to near surface soils. The technique requires the measurement of the attenuation characteristics of the fumdamental T(0,1) mode that propagates along an embedded pipe, from which the acoustic properties of the surrounding medium are inferred. From the dispersion curve analysis, the feasibility of using T(0,1) mode which is non-dispersive and have constant attenuation over all frequency range is discussed. The principles behind the technique are discussed and the results of an experimental laboratory validation are presented. The experimental data are best fitted for the different depths of wetted sand and the shear velocities as a function of depths are formulated using power law curves.

Ultrasonic Wave Attenuation Measurement for Damage Characterization of Concrete (콘크리트의 손상 평가를 위한 초음파 감쇠량 측정법)

  • Kwak, Hyo-Gyoung;Yim, Hong-Jae;Kim, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.85-86
    • /
    • 2009
  • A nondestructive test method based on the self-compensating frequency response function is proposed in this paper to quantitatively measure the attenuation in concrete materials. Since the proposed technique measures inherent attenuation of material itself, more stable experimental results can be expected. In advance, comparison of the experimental results to those obtained by other methods shows the repeatability and accuracy of the proposed technique.

  • PDF

Nondestructive Evaluation for Degraded 2.25Cr-1Mo Steel though Surface SH-wave (표면SH파를 이용한 2.25Cr-1Mo강의 열화.손상 평가)

  • Kim, Hyun-Mook;Park, Ik-Keun;Park, Un-Su;Ahn, Hyung-Keun;Kim, Chung-Soek
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.280-285
    • /
    • 2000
  • It is very important to evaluate the surface or subsurface microstructure because of their influences on mechanical properties of materials. Surface SH-wave which is horizontally polarized shear wave traveling along near surface and subsurface layer is an attractive technique for material evaluation. The destructive method is widely used for the estimation of material degradation but it has a great difficulty in preparing specimens from in-service industrial facilities. In this study, nondestructive evaluation for degraded structural materials used at high temperature though surface SH-wave method is discussed. 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $650^{\circ}$ were evaluated though ultrasonic nondestructive evaluation techniques investigating the change of sound velocity, attenuation coefficient and amplitude spectra. In addition, it has verified experimentally the frequency-dependence of attenuation coefficient though wavelet analysis method.

  • PDF

A Novel Sensitivity Verification Method for the UHF Partial Discharge Detection System in Gas Insulated Switchgear (GIS) (가스절연개폐장치용 UHF 부분방전검출장치의 새로운 감도 측정방법)

  • Gu, Seon-Geun;Park, Gi-Jun;Yun, Jin-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.450-455
    • /
    • 2001
  • We proposed a new sensitivity verification method for the UHF partial discharge(PD) detection system. Initially, we measure the UHF power induced by 5 pC PD which takes place near UHF sensor. Subsequently, we inject the swept UHF signal from a network analyzer into the GIS and measure the attenuation of the signal along the 71S Both the UHF power by 5 pC PD and the attenuation make it possible to verify the sensitivity and spatial coverage of the PD detection system. This method doesn\`t require the calibration of injected pulse type UHF signal into the GIS and makes us precisely measure the attenuation in frequency domain.

  • PDF

Design and Fabrication of Multilayer Chip Filter for Next Generation Mobile Communication Phone (차세대 이동통신 단말기에 이용되는 적층 칩 필터 설계 및 제작)

  • 이석원;윤중락
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.583-591
    • /
    • 2000
  • It this paper the multilayer chip band pass filter for next generation mobile communication phone is fabricated and designed. For the design the multilayer chip filter of non-contented equivalent circuit and contented equivalent circuit with attenuation pole is presented. Finally it is fabricated and designed using the multilayer chip filter of contented equivalent circuit with attenuation pole. The size insertion loss center frequency and band width of multilayer chip filter are 4.5$\times$3.2$\times$2.0[mm], 3.0[d.B] and 1945$\pm$25 MHz respectively. The multilayer chip filter was fabricated by screen printing with Ag electrode after tape casting. Simulation results of multilayer chip filter are compared with experimental results and found to be in excellent agreements.

  • PDF

A Study on the Evaluation of Semi-Anechoic Chamber Characteristics (전파반무향실의 특성평가에 관한 연구)

  • 김민석;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • Because of the result of a large use of electronic equipments, the occupation density of microwave frequency band is highly increased, and electromagnetic environment is getting more seriously bad. It is sometimes reported that electronic machines are not normally operated on account of the influence of undesired electromagnetic wave, which often gives fatal blow to even human life and thus becomes serious social problems. OATS(Open Area Test Site) is principally used to measure EMI or examine elelctromagnetic emission. Because of various restrictions we often build semi-anechoic chamber which has the function of OATS to measure EMI or EMS other than OATS. If the difference of the site attenuation between semi-anechoic chamber and OATS is within ${\pm}3dB$, the semi-anechoic chamber is recognized as adequate facility to measure EMI or EMS. Accordingly authors evaluate and analyze site attenuation due to absorbent materials, polarization, mutual coupling effects, etc. The calculated and the measured site attenuation in semi-anechoic chamber are compared. As a result good agreement is obtained.

  • PDF

The Effect Analysis for Rain Attenuation of VSAT

  • Tak, Hong-Sung;Wook, Shin-Gang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.4-65
    • /
    • 2001
  • In case of data transmission using the upper 10GHz frequency, rain results in attenuation of radio waves. And the most serious atmospheric effect in a satellite link is the rainfall. The attenuation of rainfall very seriously affects the quality of transmission line. Because the rain increases thermal noise and interference, and decreases the amplitude of the signal. KOWACO manages the VSAT system instead of VHF network for communication of rain and water-level data from 1998. The purpose of this system is to monitor the change of water-level and rain data during a flood duration. VHF system acquires the data by a call per a hour. But the satellite network obtains the data whenever event data occur. Thus the satellite network is more powerful than the VHF system. In study ...

  • PDF

Acoustic Properties of Rubber Compound for Anechoic Coating

  • Bae, Jong Woo;Kim, Won Ho;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.195-201
    • /
    • 2018
  • Three kinds of rubber compounds were prepared, and their underwater acoustical properties were investigated for anechoic coating. Dynamic mechanical properties of the rubber compounds were measured using a dynamic mechanical analyzer and extended to 100 kHz using time-temperature superposition. The sound speed, reflection coefficient, and attenuation constant were calculated. Silicone rubber showed the lowest reflection coefficient, and nitrile rubber showed the highest attenuation constant. The acoustic properties of nitrile rubber compounds with various compositions were investigated. The sound speed, reflection coefficient, and transmission coefficient of the nitrile rubber in the frequency range of 200-1000 kHz were measured in a water-filled tank.