• Title/Summary/Keyword: Freezing-melting

Search Result 93, Processing Time 0.02 seconds

The Thermal conductivity analysis and performance evaluation on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체의 열전도분석 및 구조안전성 검토)

  • Lee, Seung-Ha;Park, Jeong-Sik;Lee, Seok-Jin;Kim, Bong-Chan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. For the feasibility study on geothermal snow melting system, analysis of the ground melting point when operating system, life evaluation of pavements and safety evaluation of pipes are performed.

Freezing and Melting Phenomena of Urea-water Solution for Diesel Vehicle SCR System (디젤차량 SCR 시스템용 요소수용액의 동결과 해동 현상)

  • Choi, B.C.;Seo, C.K.;Myong, K.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.5-10
    • /
    • 2009
  • Urea-SCR system, the selective catalytic reduction using urea as reducing agent, is a powerful technique to reduce nitrogen oxides(NOx) emitted from diesel engines. However, a tank of urea(32.5 wt%)-water solution can be frozen in low ambient temperature levels of below $-11^{\circ}C$. The purpose of this study is to understand freezing and melting phenomena of the urea-water solution, and its can be applied to get the urea-water solution from frozen it within 5 minutes after cold start. Factors considered were the type of heater and the urea tank shape. From the results, it was found that melting volume of cartridge heater B during 5 minutes of heating period was 83ml when supplying electric power of 150W. Horizontal heater B, which was put in the narrow bottom space of the tank T1, had fast melting characteristics.

  • PDF

The Thermal conductivity analysis on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체에서의 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Seo, Un-Jong;Lee, Seung-Ha;Lee, Joo-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.221-228
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. The thermal conductivity study is essential that be applied the geothermal snow melting system according to heating exchanger pipe laying of lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. And Many variables are discovered from numerical analyzes of the same conditions with model test.

  • PDF

Development of Automatic Event Detection Algorithm for Groundwater Level Rise (지하수위 상승 자동 이벤트 감지 알고리즘 개발)

  • Park, Jeong-Ann;Kim, Song-Bae;Kim, Min-Sun;Kwon, Ku-Hung;Choi, Nag-Choul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.954-962
    • /
    • 2010
  • The objective of this study was to develop automatic event detection algorithm for groundwater level rise. The groundwater level data and rainfall data in July and August at 37 locations nationwide were analyzed to develop the algorithm for groundwater level rise due to rainfall. In addition, the algorithm for groundwater level rise by ice melting and ground freezing was developed through the analysis of groundwater level data in January. The algorithm for groundwater level rise by rainfall was composed of three parts, including correlation between previous rainfall and groundwater level, simple linear regression analysis between previous rainfall and groundwater level, and diagnosis of groundwater level rise due to new rainfall. About 49% of the analyzed data was successfully simulated for groundwater level rise by rainfall. The algorithm for groundwater level rise due to ice melting and ground freezing included graphic analysis for groundwater level versus time (day), simple linear regression analysis for groundwater level versus time, and diagnosis of groundwater level rise by new ice melting and ground freezing. Around 37% of the analyzed data was successfully simulated for groundwater level rise due to ice melting and ground freezing. The algorithms from this study would help develop strategies for sustainable development and conservation of groundwater resources.

Phase transition features of binary Co-C eutectic temperature fixed-point (이원계 Co-C 공정계 온도 고정점의 특성)

  • Kim, Yong-Gyoo;Yang, In-Seok;Gam, Kee-Sool
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.381-386
    • /
    • 2005
  • A Co-C eutectic cell for thermocouple calibration was manufactured and tested to investigate its phase transition characteristics using Type B thermocouples. It was observed that the freezing plateaus were flatter than those of melting, but the melting points were closer to the true transition temperature than the freezing points. The expanded uncertainty of melting temperature was calculated not to exceed $0.2^{\circ}C$ (k = 2). Based on the observed results, the melting process is recommended for the calibration of thermocouples.

A Basic Study of the Snow Melting System for the Anti-Freezing Road using the Pulsating Heat Pipe (PHP를 이용한 도로융설 시스템에 관한 기초연구)

  • Kim, J.S.;Ha, S.J.;Son, K.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.19-24
    • /
    • 2010
  • The purpose of this study is to develop a snow melting system using the pulsating heat pipe(PHP). The experimental apparatus is consisted of a PHP, a concrete structure, a constant water thermostatic bath and a flowmeter. The experiment was performed at the outdoor air temperature of $-8^{\circ}C$ and inlet temperature of hot water of $75^{\circ}C$. PHP is the closed and non-loop type heat exchanger which is charging R-410A as an operating fluid. As experimental results, the temperature profile of vertical and horizontal orientation of concrete structure was measured with operating time. The heat flux of the snow melting was required more than 300 $W/m^2$. We confirmed that the snow melting system using the PHP was useful for anti-freezing road.

Rayleigh Fractionation of Stable Water Isotopes during Equilibrium Freezing (평형 냉동에 의한 물동위원소의 레일리분별)

  • Lee, Jeonghoon;Jung, Hyejung;Nyamgerel, Yalalt
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • Isotopic compositions of snow or ice have been used to reconstruct paleoclimate and to calculate contribution to streamwater using isotopic hydrograph separation as an end member. During freezing and melting of snow or ice, isotopic fractionation occurs between snow or ice and liquid water. Isotopic evolution during melting process has been studied by field, melting experiments and modeling works, but that during freezing has not been well studied. In this review, isotopic fractionation during equilibrium freezing is discussed using the linear relationship between two stable water isotopes (oxygen and hydrogen) and the Rayleigh fractionation. Snow, evaporated from nearby ocean and condensated, follows the Global Meteoric Water Line (slope of 8), but the melting and freezing of snow affect the linear relationship (slope of 19.5/3.1~6.3). The isotopic evolution of liquid water by freezing observed in the open system during Rayleigh fractionation is also seen in the closed system. The isotopic evolution of snow or ice in the open system where the snow or ice is continuously removed becomes more enriched than the residual liquid water by the fractionation factor. The isotopic evolution of snow or ice in the closed system eventually equals the original isotopic compositions of liquid water. It is expected the understanding of isotopic evolution of snow or ice by freezing to increase the accuracy of the paleoclimate studies and hydrograph separation.

Study on the melting characteristics of the Fe-C eutectic temperature fixed-point (Fe-C 공정 온도 고정점의 용융 특성에 대한 연구)

  • Kim, Yong-Gyoo;Yang, In-Seok;Gam, Kee-Sool
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.257-262
    • /
    • 2006
  • A Fe-C eutectic cell for thermocouple calibration was manufactured and tested to investigate its phase transition characteristics in the thermocouple thermometry. It was observed that the freezing plateaus were strongly affected by the freeze-inducing temperature $T_{f}$. In case of the melting process, the melting plateau was influenced by the previous thermal history. As $T_{f}$. in the previous freezing was lower, the melting plateau became lower with a temperature dependence as small as $-0.0015^{\circ}C/^{\circ}C$. Therefore, it was found that the freeze-inducing temperature should be fixed to obtain a reproducible phase transition temperature in the melting. After fixing $T_{f}$, the melting process was examined and it was found that long and flat melting plateau was obtained within a reproducibility of about ${\pm}0.01^{\circ}C$. Based on the observed results, it was recommended that Fe-C eutectic temperature be best realized for the melting process with a melt-inducing temperature of $+3^{\circ}C$ above the expected liquidus temperature after freezing at $-5^{\circ}C$ below the solidus temperature.

A study on the optimum condition of electric snow melting and deicing system for the anti-freezing testing road (시험 선로 결빙 방지를 위한 전기 가열식 융설 및 융빙 시스템의 최적 조건에 관한 연구)

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.4
    • /
    • pp.362-369
    • /
    • 2008
  • The snow melting system by electric heating wires which is adopted in this research is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, installation place and each country applying the system. A main purpose of this study is figuring out the appropriate range of required heat capacity and installation depth and pitch for solving snowdrifts and freezing problems with minimum electric power consumption. This study was performed under the ambient air temperature($-2^{\circ}C$, $-5^{\circ}C$), the pitches of the electric heating wires(200 mm, 300 mm), heating value($250\;W/m^2$, $300\;W/m^2$, $350\;W/m^2$).

A Study on Snow Melting System for the Anti-freezing Testing Road (시험선로 결빙방지를 위한 융설시스템에 관한 연구)

  • Han, K.I.;Lee, A.H.;Cho, D.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-40
    • /
    • 2006
  • The snow melting system by electric heating wires which is adopted in this study is a part of road facilities to keep surface temperature of the road higher than freezing point of water for melting the snow accumulated on it. The system is designed to increase traffic safety and capacity. The electric heating wires are buried under paved road at a certain depth and operated automatically and manually. Design theory, amount of heating, and installation standard vary according to economic situation, weather condition, and installation place where the system applies. It is tried to figure out that the appropriate range of required heat capacity and installation depth and intervals for solving snowdrifts and freezing problems with the minimum electric power consumption. The most important factors to design the system are calculation of heating capacity depending on weather condition and depth and interval of the electric heating wires depending on air condition respectively. The study were performed under the range of the air temperatures($-2^{\circ}C,\;-5^{\circ}C,\;-8^{\circ}C$), the intervals of the electric heating wires(70mm, 100mm, 125mm), and the installation depths(50mm, 70mm, 100mm). The ready made commercial program package was used to verify the experimental results.

  • PDF