• Title/Summary/Keyword: Freezing stress

Search Result 143, Processing Time 0.027 seconds

A Study for Adfreeze Bond Strength Developed between Weathered Granite Soils and Aluminum Plate (동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구)

  • Lee, Joonyong;Kim, Youngseok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.23-30
    • /
    • 2013
  • Bearing capacity of pile is governed by only skin friction in frozen ground condition, while it is generally governed both by skin friction and end bearing capacity in typically unfrozen ground condition. Skin friction force, which arises from the interaction between pile and frozen soils, is defined as adfreeze bond strength, and adfreeze bond strength is one of the most important key parameters for design of pile in frozen soils. Many studies have been carried out in order to analyze adfreeze bond strength characteristics over the last fifty years. However, many studies for adfreeze bond strength have been conducted with limited circumstances, since adfreeze bond strength is sensitively affected by various influence factors such as intrinsic material properties, pile surface roughness, and externally imposed testing conditions. In this study, direct shear test is carried out inside of large-scaled freezing chamber in order to analyze the adfreeze bond strength characteristics with varying freezing temperature and normal stress. Also, the relationship between adfreeze bond strength and shear strength of the frozen soil obtained from previous study was analyzed. The coefficient of adfreeze bond strength was evaluated in order to predict adfreeze bond strength based on shear strength, and coefficients suggested from this and previous studies were compared.

An Experimental Study of the King Sejong Station and Siberian Frozen Soils (세종기지 및 시베리아 흙의 동결특성 시험)

  • Kim, Youngchin;Shin, Jaewon;Son, Seungmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 2009
  • Soil samples from the King Sejong Station in Antarctic and Vladivostok were tested in the laboratory and specific gravity, compaction curve, grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content, compressive strength were investigated. In addition, the change of tensile strength with temperature of the soil from Vladivostok was measured. Samples for the compressive strength test and tensional strength test were prepared in a mould with a fixed volume to prevent swelling. Also the effects of temperature and water content change on those strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils was larger at temperatures below freezing than those above freezing. The unfrozen water content dropped rapidly within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil of the King Sejong Station had a much larger strength than ice at an identical temperature, while clayey soil of Vladivostok had a smaller strength than ice in the initial stage, but showed a larger strength at temperatures belows $-15^{\circ}C$. Tensile strength tests revealed an increase in the strength with a decreasing temperature.

  • PDF

Seminal Plasma Heparin Binding Proteins Improve Semen Quality by Reducing Oxidative Stress during Cryopreservation of Cattle Bull Semen

  • Patel, Maulikkumar;Gandotra, Vinod K.;Cheema, Ranjna S.;Bansal, Amrit K.;Kumar, Ajeet
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1247-1255
    • /
    • 2016
  • Heparin binding proteins (HBPs) are produced by accessory glands. These are secreted into the seminal fluid, bind to the spermatozoa at the time of ejaculation, favour capacitation, acrosome reaction, and alter the immune system response toward the sperm. The present study was conducted with an objective to assess the effect of purified seminal plasma-HBPs (SP-HBPs) on cross bred cattle bull sperm attributes during two phases of cryopreservation: Pre freezing and freezing-thawing. SP-HBPs were purified from pooled seminal plasma by heparin affinity chromatography. Three doses of SP-HBPs i.e. 10, 20, $40{\mu}g/mLs$ semen were standardized to find out the optimum dose and $20{\mu}g/mLs$ was found to be an optimum dose. Semen as such and treated with SP-HBPs was diluted with sodium citrate-egg yolk diluter and cryopreserved as per the standard protocol. Sperm parameters i.e. motility, viability, Hypo-osmotic swelling test (HOST), acrosome damage, in vitro capacitation and lipid peroxidation were evaluated in SP-HBP treated and untreated (control) semen at both phases of cryopreservation. A considerable variation in percent sperm motility, viability, membrane integrity (HOST), acrosome damage, acrosome reaction and lipid peroxidation was observed at both phases among the bulls irrespective of the treatment. Incubation of neat semen with $20{\mu}g/mL$ SP-HBP before processing for cryopreservation enhanced the average motility, viability, membrane integrity by 7.2%, 1.5%, 7.9%, and 5.6%, 6.6%, 7.4% in pre-frozen and frozen-thawed semen in comparison to control. There was also an average increase of 4.1%/3.9% in in vitro capacitation and acrosome reaction in SP-HBPs-treated frozen-thawed semen as compared to control. However, binding of SP-HBPs to the sperm declined acrosome damage and lipid peroxidation by 1.3%/4.1% and 22.1/$32.7{\mu}M$/$10^9$ spermatozoa in SP-HBP treated pre-frozen/frozen-thawed semen as compared to control, respectively. Significant (p<0.05) effects were observed only in motility, HOST and in vitro acrosome reaction. It can be concluded that treatment of neat semen with SP-HBPs before cryopreservation minimized the cryoinjury by decreasing the generation of reactive oxygen species.

Prediction of Adfreeze Bond Strength Using Artificial Neural Network (인공신경망을 활용한 동착강도 예측)

  • Ko, Sung-Gyu;Shin, Hyu-Soung;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.71-81
    • /
    • 2011
  • Adfreeze bond strength is a primary design parameter, which determines bearing capacity of pile foundation in frozen ground. It is reported that adfreeze bond strength is influenced by various affecting factors like freezing temperature, confining pressure, characteristics of pile surface, soil type, etc. However, several limited researches have been performed to obtain adfreeze bond strength, for past studies considered only few affecting factors such as freezing temperature and type of pile structures. Therefore, there exists a limitation of estimating the design parameter of pile foundation with various factors in frozen ground. In this study, artificial neural network algorithm was involved to predict adfreeze bond strength with various affecting factors. From past five studies, 137 data for various experimental conditions were collected. It was divided by 100 training data and 37 testing data in random manner. Based on the analysis result, it was found that it is necessary to consider various affecting factors for the prediction of adfreeze bond strength and the prediction with artificial neural network algorithm provides enough reliability. In addition, the result of parametric study showed that temperature and pile type are primary affecting factors for adfreeze bond strength. And it was also shown that vertical stress influences only certain temperature zone, and various soil types and loading speeds might cause the change of evolution trend for adfreeze bond strength.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

A Study on the Effect of Pile Surface Roughness on Adfreeze Bond Strength (말뚝표면 거칠기에 따른 동착강도 변화에 관한 연구)

  • Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.79-88
    • /
    • 2011
  • Adfreeze bond strength develops upon freezing of pore water within soil and at foundation surface. It has been reported that various factors like temperature, soil type, and pile surface roughness affect adfreeze bond strength. Especially, pile surface roughness has been considered as a primary factor to design pile foundation in frozen ground. It has usually been estimated with fixed correction factors for pile materials. However, even if the pile foundation material is the same, the surface roughness could vary depending on the production circumstances. In this study, laboratory test was carried out to quantitatively analyze the effects of surface roughness on the adfreeze bond strength, and fractal dimension was used as a measure for surface roughness. Test results showed that adfreeze bond strength increased with decreasing temperature, increasing vertical stress and surface roughness. The adfreeze bond strength varies sensitively with surface roughness in the early freezing section of $-2^{\circ}C$, but its sensitivity decreased in the temperature ranging between $-2^{\circ}C$ to $-5^{\circ}C$. The results conclude that the roughness highly affects the frictional resistance of pile surface in frozen ground; however, the roughness does not affect considerably when the temperature drops below about $-2^{\circ}C$.

Effects of Abscisic acid and Temperature on the Anthocyanin Accumulation in Seedlings of Arabidopsis thaliana

  • Song Ju-Yeun;Kim Tae-Yun;Hong Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1093-1102
    • /
    • 2005
  • Effects of abscisic acid(ABA) and temperature on the anthocyanin accumulation and phenylalanine ammonia Iyase(PAL) activity were investigated in seedlings of Arabidopsis thaliana. In time course study, exogenous application of ABA $(50-1000\;{\mu}M)$ led to a noticeable increase in anthocyanin pigments which persisted over the following 5 days. Anthocyanins increased in concert with the chlorophyll loss. The activity of PAL, a key enzyme in the phenylpropanoid pathway, increased on exposure to ABA and reached maximum on the 4th day, This result shows that anthocyanin synthesis and PAL activity have a close physiological relationships. In the effects of temperatures ($10^{\circ}C,\;17^{\circ}C,\;25^{\circ}C$and $30^{\circ}C$) on anthocyanin accumulation and PAL activity in seedlings, a moderate-low temperatures ($17^{\circ}C$) enhanced both anthocyanin content and PAL activity, whereas elevated temperatures ($30^{\circ}C$) showed low levels of anthocyanin and PAL activity, suggesting a correlation between temperature-induced anthocyanin synthesis and the accumulation of PAL mRNA. Simultaneous application of ABA with temperatures Induced higher anthocyanin synthesis and PAL activity in seedlings than ABA or temperature stress alone. Moderate-low temperature with ABA exposure elicited the maximal induction of anthocyanin synthesis and PAL activity. Therefore, ABA treatment significantly increased thermotolerance in .A. thalinan seedlings. Ethephon and ABA showed similar mode of action in physiological effects on anthocyanin accumulation and PAL activity. Our data support that anthocyanins may be protective in preventing damage caused by environmental stresses and play an important role in the acquisition of freezing tolerance.

A Study on the Basic and Compression Characteristics of Lightweight Waste for Use as Fill Materials (성토재 적용을 위한 경량폐기물의 기본물성 및 압축특성 연구)

  • Lee, Sung-Jin;Kim, Yun-Ki;Koh, Tae-Hoon;Lee, Su-Hyung;Shin, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.61-74
    • /
    • 2011
  • This is a fundamental research on use as fill material of lightweight waste such as bottom ash and tire shred. We carried out the test for particle size distribution, specific gravity, density, shear strength, permeability and vertical compression settlement, considering water content change and temperature effect of several waste materials. Bottom ash, which is lighter than soils, has similar permeability and particle size distribution to those of weathered soils. But permeability may differ depending on the particle size distribution. The shear strength aspect of bottom ash and tire shred mixed materials are similar to that of natural fill materials. In the 1-D vertical compression settlement test, we could be assured that bottom ash and tire shred mixed materials showed similar compression settlement to that of sand under actual vertical stress. Furthermore, materials including bottom ash showed smaller compression settlement than that of weathered soils in the long-term settlement test under wetting and freezing-thawing condition.

Trehalose Metabolism: Gate to Stress Signaling and Seed Development in Plant\ulcorner

  • Chung, H-J;Kim, Y-S;Lee, E-J;Kim, J-S;Shin, Y-M;Cho, I-S;Jin, H-O;Cho, J-W;Chung, C-H
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.415-421
    • /
    • 2000
  • The disaccharide trehalose ($\alpha$-D-glucopyranosyl-$\alpha$-D-glucopyranoside) is found in variety of organ-isms that are able to withstand almost complete desiccation. In order to identify the function of trehalose in plants, we isolated Arabidopsis trehalase (AtTRE) gene that encodes the enzyme able to hydrolyze trehalose to glucose, and trehalose-6-phosphate synthase isolog, TPS3 gene by RT-PCR. The AtTRE had the substrate specificity to hydrolyze only trehalose, and a broad pH range of enzyme activity. The AtTRE promoter/GUS reporter gene was expressed in cotyledons, mature leaf tissues including guard cells, and developing siliques. The GUS expression driven by AtTPS3 promoter was significant in root tissues, and the level of GUS activity was much higher than that of the pBll 21 control seedlings. The knockout of AtTPS3 gene in Arabidopsis resulted in the retarded root development, whereas the overexpression of AtTPS3 increased the root elongation in the presence of sucrose in MS medium. Possible functions of AtTRE and AtTPS3 in plant will be discussed. In addition, ectopic expression of yeast TPS1 driven by the inducible promoters in tobacco and potato conferred the plants on the drought and freezing tolerances.

  • PDF

Expression and Localization of Heat Shock Protein 70 in Frozen-thawed IVF and Nuclear Transferred Bovine Embryos

  • Chung, K.S.;Choi, Y.J.;Song, S.J.;Do, J.T.;Yoon, B.S.;Kim, Y.J.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.311-320
    • /
    • 2002
  • The objective of this study was to assess the developmental potential in vitro produced embryos frozen-thawed with the various containers, and also examined expression and localization of heat shock protein 70 at these embryos. For the vitrification, 2-cell, 8-cell and blastocyst stage embryos produced by in vitro fertilization (IVF) and nuclear transfer (NT) were exposed the ethylene glycol 5.5 M freezing solution (EC 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop, and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min. and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid and cryo-loop. However, survival rates by straw were relatively lower than other containers. The use of cryo-loop resulted in only survival of nuclear transferred embryos (43.7%). Also, there embryos after IVF or NT were analysed by semi-quantitive reverse transcription-polymerase chain reaction (RT- PCR) methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNh were higher thawed embryos than control embryos. Immunocytochemistry used to localize the hsp 70 protein in embryos. Two and 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some frozen-thawed embryos. However, in the control, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform In distribution. Therefore, this result suggests that the exploiting Hsp 70 in the early embryos may be role for protection of stress condition for increase viability of embryos within IVF, NT and there frozen-thawed embryos.