• Title/Summary/Keyword: Freezing behavior

Search Result 117, Processing Time 0.021 seconds

The Production of Metal Matrix Composites by Using the EPC Process;Particle Behavior at Solid-Liquid Interface (소실모형주조법에 의한 금속기 복합재료의 제조;고액계면과 입자거동에 관하여)

  • Park, Jong-Ik;Kim, Young-Seob;Kim, Jeong-Min;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.93-99
    • /
    • 1997
  • A possibility of production of aluminium matrix composites by using the lost foam process was investigated. Silicon carbide particles, graphite particles, and stainless steel wires were used as reinforcement materials. The reinforcement materials were introduced to the polystyrene to form patterns via injection molding process. The results obtained from this experiment can be summarized as follows. In Al/SiCp system, the particles with the radius of $100{\mu}m$ and over were entrapped in the matrix in the case of upward freezing of which solidification direction was opposite to floating direction of the particles. And few particles were entrapped in the matrix in downward freezing. In Al/graphite system, almost no particles were entrapped in the matrix except the area chill attatched. When the thickness of polystyrene slice was 4mm in Al/stainless steel wire system, the floating tendency of fibers was observed to increase as the distance from the ingate was increased.

  • PDF

Measurement and Verification of Unfrozen Water Retention Curve of Frozen Sandy Soil Based on Pore Water Salinity (간극수 염분농도에 따른 동결 사질토의 부동수분곡선 산정 및 검증 연구)

  • Kim, Hee-Won;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.53-62
    • /
    • 2023
  • The characteristics of unfrozen water content in frozen soils significantly impact the thermal, hydraulic, and mechanical behavior of the ground. A thorough analysis of the unfrozen water content characteristics of the target subsoil material is crucial for evaluating the stability of frozen ground. This study conducted indoor experiments to measure the freezing point and unfrozen water content of sandy soil while considering pore water salinity. Utilizing the experimental data, we introduced a novel empirical model to conveniently estimate the unfrozen water retention curve. Furthermore, the validity of the unfrozen water retention curve was assessed by comparing the experimental data with the results of a simulation model that utilized the proposed empirical model as input data.

Ideal body modeling of porous rock by frost-thawing (다공질암의 동결융해 현상에 대한 이상물체 모델의 적용성 연구)

  • Han, Heui-Soo;Back, Yoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.399-405
    • /
    • 2010
  • The accumulated displacements and fatigues of rock are increased by the stress-hysteresis, induced from repeated frost-thawing. Also the shear strength is decreased by them continuously. The stress-hysteresis is affected by the atmospheric temperature changes, whose behavior is visco-elasticity, usually. Therefore, to do ideal body analysis, Kelvin model could be used to analyze the frost-thawing behavior in winter. In general, rock slope failure occurs by the deterioration of rocks, which is caused by the repetition of freezing-thawing process. In order to keep the safety of such rock mass structures the deterioration process of rock needs to be described quantitatively using some meaningful parameters. In this work, the deterioration process in freezing-thawing cycle of tuff, which is a famous soft porous rock, is investigated through laboratory tests and successfully described as a differential equation for the change of porosity. And then, the deterioration of the mechanical properties of rock, such as Young's modulus and uniaxial compressive strength, are quantitatively described as a function of the porosity.

The effects of consolidation time on the strength and failure behavior of freshwater ice rubble

  • Shayanfar, Hamid;Bailey, Eleanor;Pritchett, Robert;Taylor, Rocky
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • Medium-scale tests were conducted to measure and observe the strength and failure behavior of freshwater ice rubble. A custom box measuring $3.05m{\times}0.94m{\times}0.94m$, with Plexiglas walls was built so that failure mechanisms could be observed. Ice rubble beams of nominal thickness 50 cm were produced by placing randomly sized ice pieces into the box filled with water at its freezing temperature. After the specified consolidation time, ranging between 0.2 and 70.5 h, the ice rubble beam was deformed by pushing a platen vertically downwards though the center of the beam until failure. For consolidation times less than 4 h, the ice beam failed progressively and tended to fail by shearing on macroscopic scale. At times greater than 4 h the beam failed by bending. The change in failure behaviour has been attributed to the degree of bonding between ice blocks.

Magnetization of Ultrafine Cadmium Ferrite Particles

  • Park, Eun-Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.12-15
    • /
    • 2002
  • Ultrafine cadmium ferrite particles have been investigated by X-ray diffractometry, transmission electron microscopy and SQUID magnetometry. All peaks of X-ray diffraction patterns are broad, but correspond to a cubic spinel structure with the lattice constant of 8.65 $\AA$. The average particle size determined by TEM is 9.7 nm and the size distribution of particles is not normal, but lognormal. The maximal magnetization measured at 5 K was 17.7 emu/g. The experimental data show a transi-tion from a disorder ferrimagnetic phase to a spin-glass phase (i.e. reentrant behavior) with a freezing temperature (T$\_$f/) of 30 K. Superparamagnetic behavior of the particles is confirmed by the coincidence of the plots of M vs. H/T for 100 and 300 K.

An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition (급속 알칼리 환경하에서의 비닐에스터/FRP 보강근의 재료성능 저하 특성에 관한 실험적 연구)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • There is increasingly more research focusing on the application of FRP reinforcing bars as an alternative material for steel reinforcing bars, but most such research look at short term behavior of FRP reinforced structures. In this study, the microscopic analysis and tensile behavior of Basalt and Glass FRP bars under freezing-thawing and alkaline conditions were experimentally evaluated. After 100 cycles of the freezing and thawing, the tensile strength and elastic modulus of FRP bars decreased by about 5%. In the case of microstructure of FRP bars during the initial 20 days, no significant damages of FRP bar sections were found under $20^{\circ}C$ alkaline solution; however, the specimens immersed in $60^{\circ}C$ alkaline solution were found to experience resin dissolution, fiber damage and the separation of the resin-fiber interface. In the alkaline environment, the strength decrease of about 10% occurred in the environment at $20^{\circ}C$ for 100 days, but the tensile strength of FRPs exposed for 500 days decreased by 50%. At temperature of $40^{\circ}C$ and $60^{\circ}C$, an abrupt decrease in the strength was observed at 50 and 100 days. Especially, the tensile strength decrease of Basalt fiber Reinforced Polymer bars showed more severe degradation due to the damage caused by dissolution of resin matrix and fiber swelling in alkaline solution. Therefore, in order to improve the long-term performance of the surface braided FRPr reinforcing bars, surface treatment is required to ensure alkali resistance.

Compressive behavior of concrete under high strain rates after freeze-thaw cycles

  • Chen, Xudong;Chen, Chen;Liu, Zhiheng;Lu, Jun;Fan, Xiangqian
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2018
  • The dynamic compressive behavior of concrete after freezing and thawing tests are investigated by using the split Hopkinson pressure bar (SHPB) technique. The stress-strain curves of concrete under dynamic loading are measured and analyzed. The setting numbers of freeze-thaw cycles are 0, 25, 50, and 75 cycles. Test results show that the dynamic strength decreases and peak strain increases with the increasing of freeze-thaw cycles. Based on the Weibull distribution model, statistical damage constitutive model for dynamic stress-strain response of concrete after freeze-thaw cycles was proposed. At last, the fragmentation test of concrete subjected to dynamic loading and freeze-thaw cycles is carried out using sieving statistics. The distributions of the fragment sizes are analyzed based on fractal theory. The fractal dimensions of concrete increase with the increasing of both freeze-thaw cycle and strain rate. The relations among the fractal dimension, strain rates and freeze-thawing cycles are developed.

Characterizing Human Behavior in Emergency Situations (비상상황에서의 인간 행동 특성화 연구)

  • Lee, Jun;Yook, Donghyung
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.495-506
    • /
    • 2022
  • Purpose: When a serious disaster occurred in East Japan on March 11, 2011, some evacuees in shock failed to avoid danger to the best of their ability. Why did they hesitate and waste their time? And why didn't they choose correct escaping routes? This study attempts to classify human behavior through psychological point of view and cognitive science and to interpret behavioral patterns based on animal behaviors from the field of biology. Method: This study first conceptually categorized walking behavior into intellectualization, automaticity and instinct based on the existing literature and matched these with empirical data. Result: The actual walking patterns observed failed to be compatible with these categories and consequently, this study suggests the following five categories: normal, busy, fast & straight, freezing and tizzy. This new classification of walking behavior is based on speed, variation of speed and change of direction. Conclusion: The method used in this study and the results can be applied to simulations of walking behavior and analysis of behavior in emergency situations.

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.