• Title/Summary/Keyword: Freezing Method

Search Result 692, Processing Time 0.031 seconds

Non-thermal Treatment of Postharvest Strawberry and Establishment of Its Optimal Freezing Condition (냉동 딸기의 비가열 전처리 기술 개발 및 최적 냉동조건 수립)

  • Kang, Ji-Hoon;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • To secure the microbial safety of frozen strawberries, they were treated with the combined solution of aqueous chlorine dioxide and acetic acid prior to freezing and the effects of different freezing methods (at $-20^{\circ}C$ in a freezer, at $-70^{\circ}C$ in a gas nitrogen convection chamber, and at $-196^{\circ}C$ in liquid nitrogen) on the quality changes of strawberries were examined. Regarding the color of frozen strawberries, there were negligible changes among freezing treatments. In contrast, vitamin C content and sensory evaluation scores of strawberries frozen at $-70^{\circ}C$ were the highest among the samples. Drip loss of strawberries frozen at $-70^{\circ}C$ was the lowest as 14.39%, compared with strawberries frozen at -20 and $-196^{\circ}C$. In addition, the effects of combined treatment of 50 ppm chlorine dioxide and 1% acetic acid on the microbial growth in frozen strawberries were investigated, and the populations of preexisting microorganisms in the frozen strawberries were not detected by the combined pre-treatment. These results suggest that rapid freezing at $-70^{\circ}C$ using a gas nitrogen convection chamber is an appropriate freezing method for preserving quality of strawberries, and as a pre-freezing treatment, the combined treatment of aqueous chlorine dioxide and acetic acid can be effective for improving microbiological safety of frozen strawberries.

Cryopreservation of Human Multi-Pronuclear (PN) Zygote by Ultra-Rapid Freezing (인간 다-전핵기 (>2PN) 수정란의 초급속 동결에 관한 연구)

  • Kim, E.Y.;Yi, B.K.;Nam, H.K.;Lee, K.S.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.129-134
    • /
    • 1998
  • The objective of this study was to test whether the developmental capacity of human multi-pronuclear (PN) zygotes after ultra-rapid freezing using EM grid can be maintained. For this experiment, multi-PN zygotes which produced in human IVF program were used as an alternatives of normal 2PN zygotes, and they were separated into 3PN or $\geq4PN$ zygotes to compare their in vitro development and cryoinjury according to PN number. As freezing solution, EFS30 which consisted of 30% ethylene glycol, 18% bcoll, 0.5 M sucrose and 10% FBS added D-PBS was used. The result obtained in this experiment was summarized as follows; When the multi..PN zygotes were ultrarapidly frozen and thawed, the high mean percentages (85.5%) were survived. Also when the cleavage rates between control and freezing group were compared with PN number, there were not significantly different in each group (3PN; 81.3% & 85.4% and $\geq4PN$; 90.0% & 95.7%). When the in vitro development rates after thawing were examined, freezing 3PN group (22.0%) was not differed to control 3PN group (38.5%), although the development result of freezing $\geq4PN$ group (45%) was significantly lower than that of control $\geq4PN$ group (44.4%) (p<0.05). These results demonstrate that developmental capacity of human zygote can be obtained by ultra-rapid freezing method using EM grid and EFS30.

  • PDF

Changes in the $Ca^{2+}\;and\;Mg^{2+}$ - dependent Adenosine Triphosphatase Activity and Ultrastructure of Marine Fishes by Partial Freezing III. Changes in the Ultrastructure of Muscle Tissues of Yellowtail during Low-temperature Preservation (a해산어의 부분동결에 의한 $Ca^{2+}\;및\;Mg^{2+}$ -dependent Adenosin Triphosphatase 활성 및 근섬유의 미세구조 변화 III. 저온저장 과정중 방어 근육조직의 미세구조의 변화)

  • 최경호;박찬성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.629-636
    • /
    • 1991
  • Yellowtail fishes(Seriola quinqueeradiata) were submitted to the storages using ice-cooling($0^{\circ}C$), partial freezing($-3^{\circ}C$) and freezing $-20^{\circ}C$) method. Changes in the structures of muscle during storage at different temperatures were investigated. The ice-cooling and partial freezing storage caused early decomposition of glycogen granules and mitochondrial inner membrane, but it was accorded to much slower manner comparing with that of ice-cooling storage. The scars of ice crystals were appeared after three days of storage. The number and size of the crystal increased as progressing of the storage. They were circular and mostly located between fibers. When using the freezing storage, glycogen granules were mostly found from the muscle cell even after fourteen days of storage. Mitochonidral inner membrane maintained their integrity. The scars of ice crystals were also found, however, different from those of partial freezing storage. Their existing sites were random and their shapes were irregular. In many cases, they located in the fiber and had keen edges. Fibers were broken mostly at the Z-lines on fourteen days of storage. From these results, it was concluded that partial freezing storage can repress autolytic enzymic action and can reduce the physical damage from ice crystals which is caused by freezing.

  • PDF

Measurement of Longitudinal Liquid Permeability Using Pressure Bomb Method (Pressure Bomb법을 이용한 섬유방향 액체투과성 측정)

  • Hur, Jong-Yun;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.66-74
    • /
    • 1997
  • Liquid permeabilities of red oak and several softwoods were measured by the pressure bomb method and a modified liquid permeability method in order to investigate their efficacy. The effect of preboiling and prefreezing on wood permeability were also examined for both green and resaturated specimens. Regardless of some disadvantages these two methods were revealed as a handy tool for quick evaluation of the permeability of an unknown species. The permeabilities of the resaturated specimens increased when preboiled. but decreased when prefrozen. For green specimens, however, pre freezing increased permeability. The discrepancy of the pre freezing effect on two specimens partially attributes to their difference of initial permeabilities. For all species except radiata pine heartwood, the radii of the effective capillary pores, derived from the water potential equation, distribute from $0.42{\mu}m$ to $7.2{\mu}m$. Those of radiata pine heartwood are below $0.46{\mu}m$.

  • PDF

Selective Recovery of the SSD TRIM Command in Digital Forensics (디지털 포렌식 관점에서 SSD TRIM 명령의 선별적 복구)

  • Hwang, Hyun Ho;Park, Dong Joo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.307-314
    • /
    • 2015
  • Recently, market trends of auxiliary storage device HDD and SSD are interchangeable. In the future, the SSD is expected to be used more popular than HDD as an auxiliary storage device. The TRIM command technique has been proposed and used effectively due to the development of the SSD. The TRIM command techniques can be used to solve the problem of Freezing SSD that operating system cooperates with the SSD. The TRIM command techniques are performed in the idle time of the internal SSD that are actually deleted when a user deletes the data. However, in the point of view of computer forensics, the digital crime is increasing year by year due to lack of data recovery. Thus, this rate of arrest is insufficient. In this paper, I propose a solution that selectively manages data to delete based on advantage of the stability and the write speed of the TRIM command. Through experiments, It is verified by measuring the performance of the traditional method and selected method.

Thermal deformation and thermal stress analysis of pipe during pipe internal fluid freezing (배관의 결빙에 의한 열변형 및 열응력 해석)

  • Park, Yeong-Don;Byeon, Sang-Gyu;Gang, Beom-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • In case the systems have radioactivity, toxic liquid or expensive fluid, and have to be performed repair work at one point of the system pipe, the formation of an internal ice plug by the removal of heat from the pipe is often consideredas a useful method. In this procedure, an annular jacket is placed around the pipe, and the jacket is then filled with liquid Nitrogen(-196.deg. C). Thermal analysis by the finite element method based on the laboratory experiments has been constructed. The result of the finite element analysis on the experimental model shows to be reasonable, and thus the finite element analysis for different pipe size, material and thickness has been performed to see if the ice plugging procedure in various applications can be safely performed without possibility of damage to the pipe. It has been confirmed that in carbon steel pipes the maximum stress is found around the boundary of the freezing jacket, and the stress increases as pipe thickness increases, but the maximum stress shows no consistency along the increment of the pipe diameter. The maximum stresses appear lower than yield stress in carbon steel. It has been also shown that in stainless steel pipes the maximum stresses are also found around the boundary of the freezing jacket, but almost the same value in spite of different pipe size an thickness, and the maximum stresses show slightly higher than the yield stress of the stainless steel.

Experimental Study of Freezing Characteristics and Antifreezing Method of Liquid Additive for Early Strength (액상형 조강제의 동결특성 및 동결방지 방안에 관한 실험적 고찰)

  • Lee, Mun-Hwan;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.647-653
    • /
    • 2007
  • In ready mixed concrete factory, in case of using the high molecular additive in winter especially the liquid additive for the early strength, it is required to check the stability. In this research, the freezing and gelling characteristics of the liquid additive for the early strength is reviewed, the material and mechanical solution are proposed to that the practical quality control method will be suggested. As the result, the Freezing temperature of the liquid additive for the early strength is $-11.8^{\circ}C$, and it is the lower than the temperature at which the strength is shown. By making with sodium silicate of $37{\pm}0.5%$ designed by $SiO_2\;and\;Na_2O$ in 0.31 of mol ratio, it minimizes the gelling at the lower temperature. On the other hand, facilities for storing and supplying the material should be set at $40^{\circ}C$ so the temperature distribution is well spreaded for practical operation.

Cryo-SEM Methodology of Arabidopsis thaliana Stem Using High-Pressure Freezing (고압동결고정을 이용한 애기장대 줄기의 cryo-SEM 분석법)

  • Choi, Yun-Joung;Lee, Kyung-Hwan;Je, A-Reum;Chae, Hee-Su;Jang, Ji-Hoon;Lee, Eun-Ji;Kweon, Hee-Seok
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.111-114
    • /
    • 2012
  • The scanning electron microscopy is an ideal technique for examining plant surface at high resolution. Most hydrate samples, however, must be fix and dehydrate for observation in the scanning electron microscope. Because the microscopes operate under high vacuum, most specimens, especially biological samples, cannot withstand water removal by the vacuum system without morphological distortion. Cryo-techniques can observe in their original morphology and structure without various artifacts from conventional sample preparation. Rapid cooling is the method of choice for preparing plant samples for scanning electron microscopy in a defined physiological state. As one of cryo-technique, high-pressure freezing allows for fixation of native non-pretreated samples up to $200{\mu}M$ thick and 2 mm wide with minimal or no ice crystal damage for the freezing procedure. In this study, we could design to optimize structural preservation and imaging by comparing cryo-SEM and convention SEM preparation, and observe a fine, well preserved Arabidopsis stem's inner ultrastructure using HPF and cryo-SEM. These results would suggest a useful method of cryo-preparation and cryo-SEM for plant tissues, especially intratubule and vacuole rich structure.

Evaluation of the Mechanical Characteristics of Frozen Sand, Considering Temperature and Confining Pressure Effects, in a Cryogenic Triaxial Compression Test (동결 삼축압축시험을 통한 동결 사질토의 온도 및 구속압력에 따른 역학적 특성 평가)

  • Park, Sangyeong;Jung, Sanghoon;Hwang, Chaemin;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.7-15
    • /
    • 2022
  • Most studies have conducted cryogenic triaxial compression tests with frozen specimens prepared in a separate mold by one-directional freezing. This method has the potential to generate residual stress in a frozen specimen and cannot be adopted to simulate the application of the artificial ground freezing method in the field. Therefore, in this study, novel equipment and procedure for the cryogenic triaxial compression test were proposed to overcome the limitations of existing test methods. Therefore, the mechanical characteristics of frozen sand, considering the effect of temperature and confining pressure, were evaluated. As the freezing temperature decreased, the brittleness of frozen sand increased, and the strength increased due to a decrease in the unfrozen water content and an increase in the ice strength. A higher confining pressure resulted in an increase in interparticle friction and the pressure melting phenomenon, which caused strength reduction. Thus, it was found that the mechanical behaviors of frozen sand were simultaneously affected by both temperature and confining pressure.

An Experimental Study on Resistance of rapid Freezing and Thawing of Chloride-inhibiting Low-Heat Cement (차염성 저발열시멘트의 급속동결융해 저항성에 관한 실험적 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Ju, Min-Kwan;Kim, Tae-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.589-592
    • /
    • 2008
  • This study was conducted to assess the durability of Chloride-inhibiting Low-Heat Cement while being subjected to freezing-thawing during winter seasons. Although durability varies slightly depending on the conditions of the jobsite, frost damage to concrete resulting from repeated freezing and thawing over the course of seasonal changes is the leading cause behind lowered concrete durability. in addition, concrete that has been subjected to freezing and thawing during the winter season develops a significant amount of expansive force at the core and begins to exhibit signs of damage, such as cracking, peeling, and detachment from the aggregate. Therefore, this study fabricated test specimens using a Chloride-inhibiting Low-Heat Cement(CLC) and the widely used blast furnace slag cement(BFS) and Ordinary Portland Cement(OPC) with water-to-cement ratios of 35%, 40% and 45%, respectively, to assess the durability index of the CLC as per resistance to freezing-thawing. The specimens were then tested using the KS F 2456 method (Testing method for resistance of concrete to rapid freezing and thawing) to measure the dynamic modulus of elasticity. The dynamic modulus of elasticity measurements were then used to derive the durability indices. By comparing the durability indices, it was confirmed that CLC, BFS, and OPC all had superior durability.

  • PDF