• Title/Summary/Keyword: Freeway Traffic Management

Search Result 64, Processing Time 0.029 seconds

Development of an Effectiveness Analysis Tool for Freeway Tollgate Entrance Control (고속도로 톨게이트 진입제어용 효과분석 툴의 개발)

  • Lee, Hwan-Pil;Yun, Il-Soo;Oh, Young-Tae;Kim, Soo-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • This paper aims at developing an active expressway entrance control effectiveness analysis tool which operators can utilize and manage traffic based on current traffic condition. For this, after identifying the current problems of tollgate-based entrance policy being used, a new set of decision element such as congestion index, decision criteria for congestion, and congestion management unit has been proposed together with the procedure of newly developed tollgate control policy. Three key parts developed are traffic condition identification module, tollgate metering module, and travel speed calculation module. Some measures of effectiveness were also identified and the newly developed effectiveness analysis tool produced better result. According to classification of traffic condition by reference speed as 80km/h, the improved tollgate entrance procedure increased 21.5% in average travel speed compared with Do-Nothing case and also increased 8.8% compared with current entrance control method.

Development of a Freeway Incident Detection Model Based on Traffic Congestion Classification Scheme (교통정체상황 분류기법에 기초한 연속류 돌발상황 검지모형 개발 연구)

  • Kim, Young-Jun;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.175-196
    • /
    • 2004
  • This study focuses on improving the performance of freeway incident detection by introducing some new measures to reduce false alarms in developing a new incident detection model. The model consists of the 5 major components through which a series of decision makings in determining the given traffic flow condition are made. The decision making process was designed such that the causes of traffic congestions can be accurately classified into several types including incidents and bottlenecks according to their unique characteristics. The model performance was tested and found to be compatible with that of the existing well-recognized models in terms of the detection rate and detection time. It should noted that the model produced much less false alarms than most of the existing models. The study results prove that the initial objective of the study was satisfied as it was an experimental trial to improve the false alarm rate for the incident detection model to be more pactically usable for traffic management purposes.

A Methodology to Establish Operational Strategies for Truck Platoonings on Freeway On-ramp Areas (고속도로 유입연결로 구간 화물차 군집운영전략 수립 방안 연구)

  • LEE, Seolyoung;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.67-85
    • /
    • 2018
  • Vehicle platooning through wireless communication and automated driving technology has become realized. Platooning is a technique in which several vehicles travel at regular intervals while maintaining a minimum safety distance. Truck platooning is of keen interest because it contributes to preventing truck crashes and reducing vehicle emissions, in addition to the increase in truck flow capacity. However, it should be noted that interactions between vehicle platoons and adjacent manually-driven vehicles (MV) significantly give an impact on the performance of traffic flow. In particular, when vehicles entering from on-ramp attempt to merge into the mainstream of freeway, proper interactions by adjusting platoon size and inter-platoon spacing are required to maximize traffic performance. This study developed a methodology for establishing operational strategies for truck platoonings on freeway on-ramp areas. Average speed and conflict rate were used as measure of effectiveness (MOE) to evaluate operational efficiency and safety. Microscopic traffic simulation experiments using VISSIM were conducted to evaluate the effectiveness of various platooning scenarios. A decision making process for selecting better platoon operations to satisfy operations and safety requirements was proposed. It was revealed that a platoon operating scenario with 50m inter-platoon spacing and the platoon consisting of 6 vehicles outperformed other scenarios. The proposed methodology would effectively support the realization of novel traffic management concepts in the era of automated driving environments.

Agent-based Speed Management Strategy for Freeway Traffic Safety (Methodology and Evaluation) (고속도로 교통사고 예방을 위한 에이전트 기반 속도관리 전략 (방법론 및 평가))

  • Song, Tae-Jin;O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.17-28
    • /
    • 2011
  • This study proposed a speed management strategy for the enhancement of traffic safety on freeways. A novel feature of the proposed strategy is to provide desirable speed information to individual vehicles. A microscopic traffic simulator, VISSIM, was used for the performance evaluation. Vehicle trajectory data were used to evaluate the various speed management scenarios including the different levels of proportions of heavy vehicles. The proposed speed management strategy would be a useful precursor for developing an effective traffic control and operations system to prevent traffic accidents on freeways.

Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments (유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발)

  • Park, Eun-Mi;Seo, Ui-Hyeon;Go, Myeong-Seok;O, Hyeon-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.167-175
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at the individual vehicle or platoon level through vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. It is necessary to develop a traffic flow management scheme to take advantage of the ubiquitous transportation system environments. This paper proposes an algorithm to advise the optimal speed for each vehicle according to the traffic flow condition. The algorithm aims to stabilize the traffic flow by advising the equilibrium speed to the vehicles speeding or crawling under freely flowing condition. And it aims to prevent or at least alleviate the shockwave propagation by advising the optimal speed that should dampen the speed drop under critical flow conditions. This paper builds a simulation testbed and performs some simulation experiments for the proposed algorithm. The proposed algorithm shows the expected results in terms of travel time reduction and congestion alleviation.

Crash Clearance Time Analysis of Korean Freeway Systems using a Cox Model (Cox 모형을 활용한 고속도로 사고 처리시간 영향인자 분석)

  • Chung, Younshik;Kim, Seon Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1017-1023
    • /
    • 2017
  • Duration induced by freeway crashes has a critical influence on traffic congestion. In general, crash duration composes detection and verification, response, and clearance time. Of these, the crash clearance time determined by a crash clearance team has attracted considerable attention in the freeway congestion management since the interest of the first two time stages faded away with increasing ubiquitous mobile phone users. The objective of this study is to identify the critical factors that affect freeway crash clearance time using a Cox's proportional hazard model. In total, 6,870 crash duration data collected from 30 major Korean freeways in 2013 were used. As a result, it was found that crashes during the night, with trailer or larger size truck, and in tunnel section contribute to increasing clearance time. Crashes associated with fatality, completed damage of crashed vehicle (s), and vehicles' fire or rollover after crash also lead to increasing clearance time. Additionally, an increase in the number of vehicles involved resulted in longer clearance time. On the other hand, crashes in the vicinity of tollgate, by passenger car, during spring, on flat section, and of car-facility type had longer clearance time. On the basis of the results, this paper suggested some strategic plans and mitigation measures to reduce crash clearance time on Korean freeway systems.

An Automatic Pattern Recognition Algorithm for Identifying the Spatio-temporal Congestion Evolution Patterns in Freeway Historic Data (고속도로 이력데이터에 포함된 정체 시공간 전개 패턴 자동인식 알고리즘 개발)

  • Park, Eun Mi;Oh, Hyun Sun
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.522-530
    • /
    • 2014
  • Spatio-temporal congestion evolution pattern can be reproduced using the VDS(Vehicle Detection System) historic speed dataset in the TMC(Traffic Management Center)s. Such dataset provides a pool of spatio-temporally experienced traffic conditions. Traffic flow pattern is known as spatio-temporally recurred, and even non-recurrent congestion caused by incidents has patterns according to the incident conditions. These imply that the information should be useful for traffic prediction and traffic management. Traffic flow predictions are generally performed using black-box approaches such as neural network, genetic algorithm, and etc. Black-box approaches are not designed to provide an explanation of their modeling and reasoning process and not to estimate the benefits and the risks of the implementation of such a solution. TMCs are reluctant to employ the black-box approaches even though there are numerous valuable articles. This research proposes a more readily understandable and intuitively appealing data-driven approach and developes an algorithm for identifying congestion patterns for recurrent and non-recurrent congestion management and information provision.

Studies on Determining Optimal Downstream Loop Detector Location on Freeway Merging Section (고속도로 합류부 지점에서의 최적 검지기 설치 위치 산정에 관한 연구)

  • Yang, Choon-Heon;Son, Young-Tae
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.221-227
    • /
    • 2008
  • This study identifies the relationship between traffic data quality obtained from loop detectors and their location. Traffic data basically shows traffic flow conditions and thus, these information can be used as inputs for various transportation management strategies. Out study presents how to determine optimal downstream detector location on merging area in order to enhance the effects of ramp metering strategies. Microscopic simulation model, PARAMICS, is used as the main analytical tool. Assuming that detector location relies heavily on traffic flow characteristics in each roadway segment, we perform statistical analysis to identify homogeneous traffic conditions on merging area.

  • PDF

The Effectiveness Analysis on Set of Ramp Metering STOP-line Using Traffic Simulation Model (교통시뮬레이션 모형을 이용한 램프미터링 정지선 설정에 따른 효과분석)

  • Kim, In Su;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.111-118
    • /
    • 2014
  • PURPOSES : This study performs fundamental research on ramp-metering design criteria. METHODS : We carefully review previous studies in terms of ramp-metering design criteria and then consider applicability in Korea. For this, traffic simulation model is employed to analyze actual effect according to specific location of stop-line when implementing ramp-metering. RESULTS : When a stop-line moving forward with a 50m interval, travel speed at mainline relative to current stop-line location tends to decrease. However, traveling speed at approach roads increase about 5~18% under the same condition. When a stop-line location moving backward with a 50m interval, mainline travel speed increase approximately 17~32% whereas traveling speed at approach roads decrease. All cases are compared with the current stop-line location. CONCLUSIONS : We believe that both cases are useful with respect to freeway management. For example, moving forward a stop-line case can be used management for queuing area at ramp section and approach roads. Moving backward a stop-line case can be used for traffic control, focusing on mainline of freeways.

A Study of Ramp Metering System Using Off-ramp Exit Percentage (램프 진출교통량 비율을 이용한 램프미터링 운영방안 연구)

  • Kang, Woojin;Kim, Youngchan;Lee, Minhyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.102-115
    • /
    • 2016
  • In this study, a scheme of ramp metering that uses Off-ramp Exit Percentage instead of the O/D table required for systems of integrated control of ramps at the target freeway segment is presented. The segment from Gyeyang IC to Jangsu IC on the Seoul Outer Ring Expressway was selected for the study because the segment frequently shows large volume of traffic on the short distance between the two ICs requiring an integrated on-ramp control by taking the traffic situation on an entire expressway into account despite an unavailability of O/D data. Thus the information of Off-ramp Exit Percentage at each IC were collected instead of securing the O/D table through actual survey, and the congestion on the segment was analyzed to identify the validity of the use of off-ramp traffic instead of O/D data. In addition, the scheme of ramp metering that exploits the off-ramp traffic information was prepared through simulations conducted in a way supporting the traffic control for respective access roads thereof by taking traffic situations and queues on each ramp into account. The results obtained from the simulation analyses revealed an improved level of travel speed and traffic volume on the main line and validated the use of off-ramp traffic instead of the O/D table for the ramp metering.