• 제목/요약/키워드: Free-surface motion

검색결과 317건 처리시간 0.022초

3 차원 시간영역 전진속도 자유표면 Green 함수와 2 차 경계요소법을 사용한 선체의 방사포텐셜 수치계산 (Numerical Study of the Radiation Potential of a Ship Using the 3D Time-Domain Forward-Speed Free-Surface Green Function and a Second-Order BEM)

  • 홍도천;홍사영
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.258-268
    • /
    • 2008
  • The radiation potential of a ship advancing in waves is studied using the 3D time-domain forward-speed free-surface Green function and the Green integral equation. Numerical solutions are obtained by making use of the 2nd order BEM(Boundary Element Method) which make it possible to take account of the line integral along the waterline in a rigorous manner. The 6 degree of freedom motion memory functions of a hemisphere and the Wigley seakeeping model obtained by direct integration of the time-domain 3D potentials over the wetted surface are presented for various Froude numbers.

소재제거율을 일정하게 한 NURBS 보간기에서 절삭성 고찰 (Research on Machineability in NURBS Interpolator Considering Constant Material Removal Rate)

  • 고태조;김희슬
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.60-66
    • /
    • 2004
  • Increasing demands on precision machining of 3D free-form surface have necessitated the tool to move smoothly with varying feedrate. To this regard, parametric interpolators such as NURBS (Non-Uniform Rational B-Spline) interpolator have been introduced in CNC machining system. Such interpolators reduce the data burden in NC code, increase data transfer rate into NC controller, and finally give smooth motion while machining. In this research, a new concept to control cutting load in NURBS Interpolator was tried based on the curvature of curve. This is to protect cutting tool, and to have good machinability. For proof of the system, cutting force and surface topography were evaluated. From the experimental results. the interpolator is good enough for machining a free-form surface.

파랑중에서 전진동요하는 선박의 특이파수 억제에 관한 연구 (On the Removal of Irregular Frequencies in the Prediction of Ship Motion in Waves)

  • 이호영;염덕준
    • 대한조선학회논문집
    • /
    • 제31권4호
    • /
    • pp.73-81
    • /
    • 1994
  • 선박 내항성능의 3차원적 해석을 위하여 3차원 판넬 방법을 이용한 쏘오스 분포법과 쏘오스-다이폴 분포법이 널리 이용되어 왔다. 그러나, 이 방법들을 이용하는 경우에는 내부 유동에 의한 자유표면의 공진현상에 의해 특이파수(irregular frequency)라고 불리는 파주파수에서 동유체력 계산에 큰 오차가 발생하게 되며 이런 현상을 제거하는 것은 정확한 내항성능 해석에 필수적이라 할 수 있다. 본 논문에서는 전진동요하는 선박의 운동 해석을 위하여 Wu등이 유도한 전진하면서 동요하는 Green 함수를 이용하였다. Green함수의 계산을 위하여는 어뎁티브(adaptive) 적분방법과 스트레칭(stretching) 변환 및 정류위상(stationary phase) 적분 방법을 사용하였으며 선체의 표면과 선체 내부 수선면에 특이점을 분포한 적분방정식을 도출하였다. 또한 2차원 문제를 다룬 Ohmatsu의 제안에 따라 내부 수선면에서 법선속도가 0이라는 조건을 이용하여 동요하는 문제의 불규칙파수 현상을 제거할 수 있었다. 계산은 Series 60($C_B=0.7$)에 대하여 수행되었으며 부가질량 계수, 감쇠 계수 및 파랑강제력에 대하여 기존의 연구 결과 및 실험 결과와 비교하였다.

  • PDF

상하단이 자유롭게 수평동요하는 수중 조파판에 의해 생성된 수면파의 근사해석 (Linear Analysis of Water Surface Waves Generated by Submerged Wave Board Whose Upper and Lower Ends Oscillate Horizontally Freely)

  • 김효철;오정근;권종오;류재문
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.418-426
    • /
    • 2019
  • To derive a simplified analytic solution which can be utilized as a fundamental solution for the wave maker design, a segment of the wave board has been idealized as a submerged line segment in a two dimensional domain of a wave flume. The lower end of the line segment could be located at arbitrary depth of the wave flume and the upper end of the board could be also submerged to any depth from the free surface. The freely oscillating motion of the wave board is assumed to be defined by determining the condition of horizontal oscillation on both ends differently. The submerged wave board oscillating in horizontal direction could be specified by selecting the amplitude, frequency and the phase lag differently on lower and upper ends of the board. The simplified two dimensional wave generated by the wave board segment has been obtained by the first order perturbation method. It is found that the general solution of the freely oscillating wave board in two dimensional domain could be decomposed into the solution of flap motion with lower end hinge and swing motion with upper end hinge. The case study of the analytic solutions has been carried out to evaluate the effect on the wave height due to the difference of oscillation frequency, phase difference and variation of stroke between for the motion of both ends. It is found that the solution of the freely oscillating wave board could be utilized for the development of high performance wavemaker especially for irregular waves.

Effect of natural frequency modes on sloshing phenomenon in a rectangular tank

  • Jung, Jae Hwan;Yoon, Hyun Sik;Lee, Chang Yeol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.580-594
    • /
    • 2015
  • Liquid sloshing in two-dimensional (2-D) and three-dimensional (3-D) rectangular tanks is simulated by using a level set method based on the finite volume method. In order to examine the effect of natural frequency modes on liquid sloshing, we considered a wide range of frequency ratios ($0.5{\leq}fr{\leq}3.2$). The frequency ratio is defined by the ratio of the excitation frequency to the natural frequency of the fluid, and covers natural frequency modes from 1 to 5. When fr = 1, which corresponds to the first mode of the natural frequency, strong liquid sloshing reveals roof impact, and significant forces are generated by the liquid in the tank. The liquid flows are mainly unidirectional. Thus, the strong bulk motion of the fluid contributes to a higher elevation of the free surface. However, at fr = 2, the sloshing is considerably suppressed, resulting in a calm wave with relatively lower elevation of the free surface, since the waves undergo destructive interference. At fr = 2, the lower peak of the free surface elevation occurs. At higher modes of $fr_3$, $fr_4$, and $fr_5$, the free surface reveals irregular deformation with nonlinear waves in every case. However, the deformation of the free surface becomes weaker at higher natural frequency modes. Finally, 3-D simulations confirm our 2-D results.

판형 및 다공형 배플을 포함한 탱크 내 슬로싱에 대한 유동해석 (A NUMERICAL ANALYSIS OF THE SLOSHING IN A TANK WITH PLATE/POROUS BAFFLES)

  • 이상혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.215-222
    • /
    • 2009
  • In the present study, a numerical analysis on the sloshing in a tank with the harmonic motion was investigated. A VOF method was used for two-phase flows inside the sloshing tank and a source term of the momentum equation was applied for the harmonic motion. This numerical method was verified by comparing its results with the available experimental data. The sloshing in a tank causes the instability of the fluid flows and the fluctuation of the impact pressure on the tank. By these phenomena of the tank sloshing, the sloshing problems such as the failure and the noise of system can be generated. For the reduction of these sloshing problems, the various baffles such as the horizontal/vertical plate baffles and the porous baffles inside the tank are installed. With the installations of these baffles, the characteristics of the liquid behavior in the sloshing tank, the impact pressure on the wall, the amplitude of the free surface near the wall and the sloshing noise were numerically analyzed.

  • PDF

2차원 쐐기형 구조물의 슬래밍 현상에 대한 수치 유동해석 (Numerical Simulation of Slamming Phenomena for 2-D Wedges)

  • 염덕준;윤범상
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.477-486
    • /
    • 2008
  • Numerical analysis for slamming impact phenomena has been carried out when 2-dimensional wedge shaped structure with finite deadrise angles enter the free surface by using a commertial CFD code, FLUENT. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct scheme (or PLIC-VOF scheme) is used for the tracking of the deforming free surface. User defined function of 6 degrees of freedom motion and moving dynamic mesh option are used for the expression of the downward motion of the structure and deforming of unstructured meshes adjacent to the structure. The magnitude and the location of impact pressure and the total drag force which is the summation of pressures distributed at the bottom of the structure are analyzed. Results of the analysis show good agreement with the results of similarity solution, asymptotic solution and the solution of BEM.

Global hydroelastic model for springing and whipping based on a free-surface CFD code (OpenFOAM)

  • Seng, Sopheak;Jensen, Jorgen Juncher;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1024-1040
    • /
    • 2014
  • The theoretical background and a numerical solution procedure for a time domain hydroelastic code are presented in this paper. The code combines a VOF-based free surface flow solver with a flexible body motion solver where the body linear elastic deformation is described by a modal superposition of dry mode shapes expressed in a local floating frame of reference. These mode shapes can be obtained from any finite element code. The floating frame undergoes a pseudo rigid-body motion which allows for a large rigid body translation and rotation and fully preserves the coupling with the local structural deformation. The formulation relies on the ability of the flow solver to provide the total fluid action on the body including e.g. the viscous forces, hydrostatic and hydrodynamic forces, slamming forces and the fluid damping. A numerical simulation of a flexible barge is provided and compared to experiments to show that the VOF-based flow solver has this ability and the code has the potential to predict the global hydroelastic responses accurately.

Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels

  • Wang, Yuanyuan;Chai, Shuhong;Nguyen, Hung Duc
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.314-324
    • /
    • 2020
  • Due to the nonlinearity and environmental uncertainties, the design of the ship's steering controller is a long-term challenge. The purpose of this study is to design an intelligent autopilot based on Extended Kalman Filter (EKF) trained Radial Basis Function Neural Network (RBFNN) control algorithm. The newly developed free running model scaled surface vessel was employed to execute the motion control experiments. After describing the design of the EKF trained RBFNN autopilot, the performances of the proposed control system were investigated by conducting experiments using the physical model on lake and simulations using the corresponding mathematical model. The results demonstrate that the developed control system is feasible to be used for the ship's motion control in the presences of environmental disturbances. Moreover, in comparison with the Back-Propagation (BP) neural networks and Proportional-Derivative (PD) based control methods, the EKF RBFNN based control method shows better performance regarding course keeping and trajectory tracking.