• Title/Summary/Keyword: Free-surface motion

Search Result 315, Processing Time 0.029 seconds

Experimental/Numerical Study on a Secondary Flow within a Rectangular Container Subjected to a Horizontal Oscillation (수평가진을 받는 직사각형 용기 내 2차 유동의 실험적/수치해석적 연구)

  • Byun, Min-Soo;Suh, Yong-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1014-1021
    • /
    • 2002
  • Analysis of two-dimensional secondary flows given by an oscillatory motion of a liquid with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We considered the effects of the free-surface properties such as the surface tension and the dilatational viscosity. The boundary-layer analysis as well as an experiment is used in establishing the free surface properties. The secondary flow patterns are visualized by a laser sheet. It is shown that the secondary flow patterns predicted by the numerical methods are in good agreement with the experimental results.

A Numerical Analysis of the Behavior of the Free Surface in a Moving Cup (이송되는 컵 내부의 자유 표면의 거동 특성에 대한 수치해석)

  • Hong, Tae-Hyub;Chae, Hee-Moon;Kim, Chyang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2997-3002
    • /
    • 2007
  • A manipulator is operated for the motion of mechanical hands or arms by mechanical mechanism. When a cup including liquid inside is shifted by a manipulator, it is important to know how a free surface of the liquid moves. In this study, non-dimensional parameters have been found that affect the rise of the free surface in a cup moving with constant acceleration. The non-dimensional parameters are the dimensionless time, the ratio of inertia effect to vicous effect (Reynolds number), aspect ratio of the liquid inside the cup and acceleration ratio (Froude number). Through this study, the height of the free surface rise in a cup has been predicted. Generally the maximum rise of the free surface is dependent on the Reynolds number and Froude number strongly, but on the aspect ratio weakly. But the influence of the aspect ratio on the maximum rise of the free surface in not negligible in the range 10 < Re < 100.

  • PDF

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Basic Concepts in Criteria of Strong Motion Seismograph (지진계측기 표준규격에 대한 기본개념)

  • 지헌철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.468-476
    • /
    • 2000
  • The Criteria of strong motion seismograph installed at free surface and structure is developed as a cooperative project of KEERC considering seismicity and state of seismic instrumentation of Korea. The background of this development and basic concepts are summarized in this report. The criteria of seismic sensor and recorder is also introduced. It is highly recommended to apply this criteria to installation and operation of seismograph at free surface and structure.

  • PDF

Code Development for Analysis of 2D Viscous Flow with Free Surface (2차원 자유표면 점성 유동 계산 코드 개발에 관한 연구)

  • Huh J. S.;Sah J.-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.162-167
    • /
    • 1998
  • A computer code has been developed for the analysis of 2D viscous flow with free surface. VOF method and higher order upwind scheme have been employed for the accurate prediction of free surface motion. Surface tension effect and axisymmetric flow can be computed by the present code.

  • PDF

Nonlinear Liquid Sloshing Analysis in a Cylindrical Container by Arbitrary Lagrangian-Eulerian Approach (Arbitrary Lagrangian-Eulerian 기법에 의한 원통형 유체저장구조물 내부유체의 비선형 슬러싱 해석)

  • Kwon, Hyung-O;Cho, Kyung-Hwan;Kim, Moon-Kyum;Lim, Yun-Mook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.71-80
    • /
    • 2005
  • The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is nonlinear, but also because the position of the free surface varies with time in a manner not known a priori. Therefore, this nonlinear phenomenon, which is characterized by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. In this study, three-dimensional boundary element method(BEM), which is based on the so-called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only one displacement variable, even for a three-dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the developed procedure.

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

A Study on the Multiple OWC Chamber Motion in Waves (다중 OWC챔버 구조물의 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.202-205
    • /
    • 2002
  • The motion of a floating body with multiple owe chambers in waves is studied taking account of fluctuating air pressure in the chambers. The atmospheric pressure drop in one chamber is interrelated with the drop in the other chamber. Velocity potential in the water due to the free surface oscillating pressure patches is calculated by making use of the hybrid Green integral equation. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop in the multiple chambers.

  • PDF

Theoretical Results for a Dipole Plasmonic Mode Based on a Forced Damped Harmonic Oscillator Model

  • Tongtong Hao;Quanshui Li
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • The localized surface-plasmon resonance has drawn great attention, due to its unique optical properties. In this work a general theoretical description of the dipole mode is proposed, using the forced damped harmonic oscillator model of free charges in an ellipsoid. The restoring force and driving force are derived in the quasistatic approximation under general conditions. In this model, metal is regarded as composed of free charges and bound charges. The bound charges form the dielectric background which has a dielectric function. Those free charges undergo a collective motion in the dielectric background under the driving force. The response of free charges will not be included in the dielectric function like the Drude model. The extinction and scattering cross sections as well as the damping coefficient from our model are verified to be consistent with those based on the Drude model. We introduce size effects and modify the restoring and driving forces by adding the dynamic depolarization factor and the radiation damping term to the depolarization factor. This model provides an intuitive physical picture as well as a simple theoretical description of the dipole mode of the localized surface-plasmon resonance based on free-charge collective motion.