• Title/Summary/Keyword: Free-floating

Search Result 246, Processing Time 0.021 seconds

Suppression of Load Pendulation Using Tagline Control System for Floating Crane (해상 크레인에 의해 인양되는 중량물의 거동 감쇠를 위한 Tagline 제어 시스템)

  • Ku, Nam-Kug;Cha, Ju-Hwan;Kwon, Jung-Han;Lee, Kyu-Yuel
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.527-535
    • /
    • 2009
  • This paper describes the control system to suppress the load pendulation using tagline for the floating crane. Dynamic equation of motion of the floating crane and the load is derived using Newton's 2nd law and free body model. The floating crane and the load are assumed that they move in center plane. Each rigid body has 3 DOF (surge, heave, pitch), because it moves in two directions and rotates. Then, this system, which is composed of two rigid bodies, has 6 DOF. The gravitational force, the hydrostatic force, the hydrodynamic force and the tension of the wire rope are considered as external forces, which affect to the floating crane. To suppress the pendulation of the load, the tagline, which connects between the load and the float crane, is applied to the system. The tagline is composed of the spring and the wire rope. Proportional and Derivative control is used as a linear control algorithm. The results of the numerical analysis of the 3,600 ton floating crane show that the tagline system is effective to suppress the load pendulation.

Structural Aspects of the Reduced Free-floating Hydrophyte, Spirodela polyrhiza (부유부엽성 개구리밥 식물체의 구조분화 연구)

  • Kim, Kyoung-Ae;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.233-240
    • /
    • 2000
  • Aspects of structural differentiation of the free -floating hydrophyte, Spirodela polyrhira, has been investigated. The hydrophyte exhibited highly reduced structures having only fronds, connective stalks, and roots as a mature plant. The fronds were major photosynthetic and vegetatively reproducing organ during the growth. Daughter fronds which developed early in the mother frond were also chlorenchymatous, but they remained within foliage sheaths of the mother frond before separation from connecting stalks. Although the stalks and roots originated from the same meristematic region of the frond, they exhibited the distinct polarity showing former lateral growth and latter axial growth. Air chambers were formed only in the fronds and roots. Cellular components were scattered throughout the diffuse cytoplasm in most of the actively growing stalk cells. Root cells protected by the root cap demonstrated relatively complex organization, showing dense cytoplasm with Golgi, rER, mitochondria, and chloroplasts in the cortical cells. Cells in the root cap were highly vacuolated within the peripheral cytoplasm. Such reduction and differentiation of the plant body in Spirodela polyrhiza most effectively contributes to the better adaptation of smaller plants to superficial aquatic environments, while also enabling the rapid growth.

  • PDF

On Numerical Method for Radiation Problem of a 2-D Floating Body (2차원 부유체 강제동요문제의 수치해석에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.43-53
    • /
    • 1993
  • There exist two difficulties in the nonlinear wave-body problems. First is the abrupt behavior near the intersection point between the body and the free surface, and second is the far field treatment. In this paper, the far field treatment is considered. The main idea is the Taylor series expansion of free-surface geometry and the application of F.F.T. algorithm. The numerical step is as follows. The velocity potential is expressed by the Green's theorem. and the solution is obtained by iteration method. In the iteration stage, the expressions by the Green's theorem are transformed to the convolution forts with the expansion of free surface by the wave slope. Here F.F.T. is applied, so the computing time can be of O(Nlog N) where N is the number of unknowns. The numerical analysis is carried out and the results are compared with other results in linear floating body problem and nonlinear moving pressure patch problem, and good agreements are obtained. Finally nonlinear floating body radiation problem is carried out with computing time of O(Nlog N).

  • PDF

An Analytic Analysis for a Two-Dimensional Floating and Fluid-Filled Membrane Structure (부유식 유체저장용 2차원 막구조물의 이론적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.32-37
    • /
    • 2009
  • An analytic similarity shape solution was studied for a two-dimensional floating and fluid-filled membrane structure. The static shape of a membrane structure can be expressed as a set of nonlinear ordinary differential equations. The integration of curvature leads to an analytic solution for the shape, which contains unknown boundary values. Matching the upper and lower shapes at the free surface incorporated with their buoyancy allowed the unknowns to be determined. Some characteristic values of similarity shapes were evaluated and shapes are illustrated for various density ratios and volume efficiency ratios.

Dynamic Analysis of Floating Flexible Body Using Perturbation Method (섭동법을 이용한 부유 한성체의 동역학 해석)

  • Seong, Kwan-Jae;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1354-1359
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of floating flexible body. In dealing with the dynamics of free-floating body, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In the previous paper, we proposed the use of perturbation method to the coupled equations of motion and derived zero-order and first-order equations of motion. The derivation process was lengthy and tedious. Hence, in this paper, we propose a new approach to the same problem by applying the perturbation method to the Lagrange's equations, thus providing a systematic approach to the addressed problem. Theoretical derivations show the efficacy of the proposed method.

Experimental and numerical study on motion responses of modular floating structures with connectors in waves

  • Dong-Hee Choi;Jae-Min Jeon;Min-Ju Maeng;Jeong-Hyeon Kim;Bo Woo Nam
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.277-299
    • /
    • 2024
  • In this study, the wave-induced motion responses of modular floating structures (MFS) was investigated through a series of experiments in a two-dimensional wave tank. A 1:63 scale model test was conducted using a 1-by-2 modular floating structure consisting of two modules and connectors. Two different types of connectors were considered: a pitch-free hinge and rigid connector. The numerical analysis was performed based on the higher-order boundary element method (HOBEM) and wave Green function with potential flow theory. First, the heave and pitch RAOs of the modules from the regular wave tests were directly compared with numerical analysis results. Next, the motion spectra and their statistical values from the irregular wave tests were compared with the numerical analysis results. The study revealed that the sheltering effect of the weather side module led to a reduction in motion of the lee side module. The numerical analysis showed good agreement with the experimental data, demonstrating the validity of the numerical method. Additionally, the rigid connector, which strongly constrain all six degrees of freedom, significantly reduce pitch motion, making the modules behave as a single rigid body.

Study on the Radiation Forces on a Pontoon Type Floating Structure and Submerged Plate : Hydrodynamic Interaction Effect by Submerged Plate (폰툰형 부체구조물과 몰수평판에 작용하는 라디에이션 유체력에 관한 연구 : 몰수평판에 의한 유체력 간섭 영향)

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.683-687
    • /
    • 2007
  • Hydroelastic deformation of pontoon type floating structure in waves is critical in structural design. Therefore, it is necessary to develop additional technology that make to dissipate the wave energy as the submerged horizontal plate. In this study, we investigate the characteristics of hydrodynamic interaction effect by the submerged plate affecting to the radiation forces on a pontoon type floating structure using numerical analysis. We have developed the numerical method based on the composite grid system that consists of moving and fixed grid to compute the radiation forces due to the heaving motion of pontoon type floating structure and submerged plate. The numerical simulations based on the finite difference method are carried out to solve the fully nonlinear free surface involving the breaking waves and compared with the experimental data to confirm the reliability of the numerical method. Then, we discuss the interaction effects on the hydrodynamic forces that could influence on the hydroelastic response of floating structure.

An experimental study on the Free stream turbulence of Floating body with vertical plate (연속부착된 수직평판을 갖는 부유구조물 후류의 자유유동 난류강도에 대한 실험적연구)

  • Kim, Ho;Oh, Kyoung-Gun;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.125-126
    • /
    • 2007
  • In this paper, the floating body with vertical plate is introduced with a study on the flow patterns and characteristics in around the floating body by using 2 frame particle tracking method. This paper introduce an analysis method to predict the characteristics if flow around the neighboring fields if Floating Body with vertical plate in order to investigate a high performance model. Flow visualization has conducted in a drcu1ating water channel by a high speed camera and etc. Flow phenomena according to turbulence intensity distribution and flow separation around the floating body with vertical plate were obtained by two-dimensional PIV system.

  • PDF

A Study on the Characteristics of the Oil-free Turbocharger for Diesel Engine Vehicles (디젤 엔진 차량의 무급유 터보차져의 성능 평가에 관한 연구)

  • Park, Dong-Jin;Kim, Chang-Ho;Lee, Yong-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.47-55
    • /
    • 2008
  • Turbocharger has a main purpose on recycling of the exhaust gas from the engine cylinder. On the basis of the facility characteristics, the turbocharger supported on floating ring bearings has some problems such as the large volume, oil supplement for lubrication and high power loss due to high operating torque. The air foil bearing has been studied as the bearing element to be able to alternate the floating ring bearing without the problems of the floating ring bearing. In this study, the air foil bearing has 2 parts; journal and thrust bearings, and the test facility consists of the engine, exhaust and intake parts. In addiction, the specification of the turbocharger follows a small turbocharger for SUV engine. The engine speed is varied from 750 (idle rpm) to 2,500 rpm and then, the rotating speed of the turbocharger rotor is accelerated from 0 to 100,000 rpm. From those experiments, the comparison between the performances of the air foil bearing and floating ring bearing is conducted and the results show that the air foil bearing has less power loss, maximum 770 watt, than the floating ring bearing, maximum 5,110 watt. This result verifies that the air foil bearing is more efficient and able to output more power under the same condition of the input power.