• Title/Summary/Keyword: Free-Surface Flows

Search Result 198, Processing Time 0.023 seconds

An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems (2차원 자유표면파 문제에서의 국소 유한요소법의 응용)

  • Hyun-Kwon,Kil;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

Effects of Gas-surface Interaction Models on Spacecraft Aerodynamics

  • Khlopkov, Yuri Ivanovich;Chernyshev, Sergey Leonidovich;Myint, Zay Yar Myo;Khlopkov, Anton Yurievich
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The influence of boundary condition of the bodies with gas flows is one of the most important problems in high-altitude aerodynamics. In this paper presents the results of the calculation of aerodynamic characteristics of aerospace vehicle using Monte-Carlo method based on three different gas-surface interaction models - Maxwell model, Cercignani-Lampis-Lord (CLL) model and Lennard-Jones (LJ) potential. These models are very sensitive for force and moment coefficients of aerospace vehicle in the hypersonic free molecular flow. The models, method and results can be used for new generation aerospace vehicle design.

Downward Influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW Case Study (GloSea6 모형에서의 성층권 돌연승온 하층 영향 분석: 2018년 성층권 돌연승온 사례)

  • Dong-Chan Hong;Hyeon-Seon Park;Seok-Woo Son;Joowan Kim;Johan Lee;Yu-Kyung Hyun
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.493-503
    • /
    • 2023
  • This study investigates the downward influences of sudden stratospheric warming (SSW) in February 2018 using a subseasonal-to-seasonal forecast model, Global Seasonal forecasting system version 6 (GloSea6). To quantify the influences of SSW on the tropospheric prediction skills, free-evolving (FREE) forecasts are compared to stratospheric nudging (NUDGED) forecasts where zonal-mean flows in the stratosphere are relaxed to the observation. When the models are initialized on 8 February 2018, both FREE and NUDGED forecasts successfully predicted the SSW and its downward influences. However, FREE forecasts initialized on 25 January 2018 failed to predict the SSW and downward propagation of negative Northern Annular Mode (NAM). NUDGED forecasts with SSW nudging qualitatively well predicted the downward propagation of negative NAM. In quantity, NUDGED forecasts exhibit a higher mean squared skill score of 500 hPa geopotential height than FREE forecasts in late February and early March. The surface air temperature and precipitation are also better predicted. Cold and dry anomalies over the Eurasia are particularly well predicted in NUDGED compared to FREE forecasts. These results suggest that a successful prediction of SSW could improve the surface prediction skills on subseasonal-to-seasonal time scale.

Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation (수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교)

  • Park, Il-Seouk;Kim, Young-Jo;Min, June-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1169-1176
    • /
    • 2011
  • Liquid film flows are classified into waveless laminar, wavy laminar, and turbulent flows depending on the Reynolds number or the flow stability. Since the wavy motions of the film flows are so intricate and nonlinear, studies on them have largely been experimental. Most numerical approaches have been limited to the waveless flow regime. The various free surface-tracking schemes adopted for this problem were used to more accurately estimate the average film thickness, rather than to capture the unsteady wavy motion. In this study, the wavy motions in laminar wavy liquid film flows with Reynolds numbers of 200-1000 were simulated with various numerical schemes based on the volume of fluid (VOF) method for interface tracking. The results from each numerical scheme were compared with the experimental results in terms of the average film thickness, the wave velocity, and the wave amplitude.

Blob and Wave Formation at the Free Edge of an Initially Stationary fluid Sheet (액체 필름 끝단에서의 유동특성에 관한 수치연구)

  • Song Museok;Ahn Jail
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.307-310
    • /
    • 2002
  • A two-dimensional numerical method for inviscid two-fluid flows with evolution of density interface is developed, and an initially stationary two-dimensional fluid sheet surrounded by another fluid is studied. The Interface between two fluids is modeled as a vertex sheet, and the flow field u÷th the evolution of interface is solved by using vortex-in-cell/front-tracking method. The edge of the sheet Is pulled back into the sheet due to surface tension and a blob is formed at the edge. This blob and fluid sheet are connected by a thin neck. In the inviscid limit, such process of the blob and neck formation is examined in detail and their kinematic characteristics are summarized with dimensionless parameters. The edge recedes at $V=1.06({\sigma}/{\rho}h)^{0.5}$ and the capillary wave Propagating into the fluid sheet must be considered for bettor understanding of the edge receding.

  • PDF

DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes (비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구)

  • Kim M. G.;Kwon O. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF

Numerical Analysis on Turning and Yaw Checking Abilities of KCS in Calm Water a Based on Free-Running Simulations (가상 자유 항주를 이용한 KCS 선형의 정수 중 선회 및 변침 성능 해석)

  • Yang, Kyung-Kyu;Kim, Yoo-Chul;Kim, Kwang-Soo;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To understand physical phenomena of ship maneuvering deeply, a numerical study based on computational fluid dynamics is required. A computational method that can simulate the interaction between the ship hull, propeller, and rudder will provide informative local flows during ship maneuvering tests. The analysis of local flows can be applied to improve a physical model of ship maneuvering that has been widely used in maneuvering simulations. In this study, the numerical program named as WAVIS that has been developed for ship resistance and propulsion problems is extended to simulate ship maneuvering by free-running tests. The six degree-of-freedom of ship motion is implemented based on Euler angles and the overset technique is applied to treat the moving grid of ship hull and rudder. The propulsion force due to a propeller is calculated by a panel method that is based on the lifting-surface theory. The newly extended code is applied to simulate turning and zig-zag tests of KCS and the comparison with the available experimental data has been made.

Large eddy simulation of flow over a wooded building complex

  • Rehm, R.G.;McGrattan, K.B.;Baum, H.R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.291-300
    • /
    • 2002
  • An efficient large eddy simulation algorithm is used to compute surface pressure distributions on an eleven story (target) building on the NIST campus. Local meteorology, neighboring buildings, topography and large vegetation (trees) all play an important part in determining the flows and therefore the pressures experienced by the target. The wind profile imposed at the upstream surface of the computational domain follows a power law with an exponent representing a suburban terrain. This profile accounts for the flow retardation due to friction from the surface of the earth, but does not include fluctuations that would naturally occur in this flow. The effect of neighboring buildings on the time dependent surface pressures experienced by the target is examined. Comparison of the pressure fluctuations on the single target building alone with those on the target building in situ show that, owing to vortices shed by the upstream buildings, fluctuations are larger when such buildings are present. Even when buildings are lateral to or behind the target, the pressure disturbances generate significantly different flows around this building. A simple grid-free mathematical model of a tree is presented in which the trunk and the branches are each represented by a collection of spherical particles strung together like beads on a string. The drag from the tree, determined as the sum of the drags of the component particles, produces an oscillatory, spreading wake of slower fluid, suggesting that the behavior of trees as wind breakers can be modeled usefully.

Conformation of single polymer molecule in a slot coating flow

  • Lee, Jeong-Yong;Ryu, Bo-Kyung;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • To satisfy good mechanical and optical properties of polymer-coated film products, it will be indispensable to elucidate the molecular orientation of polymer chains within coating liquids in coating flows. Using hybridized numerical method between computational fluid dynamics (CFD) and Brownian dynamics (BD) simulations can provide the useful information for the better quality control of coated films. Flexible polymer chains, e.g., ${\lambda}$-DNA molecules here, change their conformation according to the flow strength and the flow type. The molecular conformation within the coated film on the web or substrate is quite different, because the polymer chains experience the complicated flow strength and flow types in flow field. Especially in the slot coating flow, these chains are more extended by the extension-like flow field generated in the free surface curvature just beyond the downstream die region. Also, the polymer chain extension beneath the free surface can be affected by the die geometry, e.g., the coating gap, changing flow field.

A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method (ISPH법을 이용한 2차원 비압축성 유체 유동의 수치시뮬레이션 기법 연구)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.560-568
    • /
    • 2011
  • In SPH(Smoothed Particle Hydrodynamics) method, the fluid has been assumed that it is weakly compressible to solve the basic equations composed of Navier-Stokes equations and continuity equation. That leads to some drawbacks such as non-physical pressure fluctuations and a restriction as like small time steps in computation. In this study, to improve these problems we assume that the fluid is incompressible and the velocity-pressure coupling problem is solved by a projection method(that is, by ISPH method). The two-dimensional computation results of dam breaking and gravitational wave generation are respectively compared with the results of finite volume method and analytical method to confirm the accuracy of the present numerical computation technique. And, the agreements are comparatively acceptable. Subsequently, the green water simulations of a two-dimensional fixed barge are carried out to inspect the possibility of practical application to ship hydrodynamics, those correspond to one of the violent free surface motions with impact loads. The agreement between the experimental data and the present computational results is also comparatively good.