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Abstract

The influence of boundary condition of the bodies with gas flows is one of the most important problems in high-altitude 

aerodynamics. In this paper presents the results of the calculation of aerodynamic characteristics of aerospace vehicle using 

Monte-Carlo method based on three different gas-surface interaction models – Maxwell model, Cercignani-Lampis-Lord 

(CLL) model and Lennard-Jones (LJ) potential. These models are very sensitive for force and moment coefficients of aerospace 

vehicle in the hypersonic free molecular flow. The models, method and results can be used for new generation aerospace 

vehicle design. 
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1. Introduction

The development of aerospace and high-altitude 

aviation technologies requires to obtain correct data on the 

aerodynamic characteristics in all ranges of flow regimes, 

i.e., from free-molecular flow regime to continuum flow 

regime. The difficulty in the development of hypersonic flows 

research is caused by quite number of problems, for example, 

modeling full-scale flight conditions in the wind tunnels. 

It’s impossible to reproduce the heat regime of flow over a 

vehicle, i.e., the model heating in the wind tunnel leads to a 

high value of temperature factor, while the temperature of the 

vehicle surface in full-scale conditions is significantly lower 

than the total temperature of the flow. Therefore, it’s required 

the involvement of the calculation at the initial stage of aircraft 

vehicle design.

While the aircrafts are moving in an upper atmosphere 

where it’s necessary to take into account the molecular 

structure of gas, kinematic models are applied (such as 

the Boltzmann equation and corresponding numerical 

simulation methods). In the case of high-altitude (such as 

free molecular flow regime) the integral of collisions in the 

Boltzmann equation becomes zero and its general solution 

is a function of distribution, which remains constant along 

the paths of particles. The basic quantitative tool for the study 

of rarefied gas flow is direct simulation Monte Carlo method 

(DSMC). In order to determine the forces and heat exchange 

of the gas on the body, it’s sufficient to know local exchanges 

of coefficients of impulse and energy. 

In kinetic theory, the gas-surface interaction is a main form 

of a boundary condition between the gas molecules and solid 

surface. Although various gas-surface interaction models 

have been proposed over the last century, the validity of these 

models remains an important fact in rarefied gas dynamics. 

The aim of this paper is to predict aerodynamic 

characteristics of aerospace vehicles using Direct Simulation 

Monte Carlo (DSMC) method by taking into account various 

gas-surface interaction models.    
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2. Description of Monte Carlo Method

The Boltzmann integro-differential kinetic equation in 

rarefied gas dynamics is 

1 1 1( ) εf f f f f f bdbd d
t

∂
∂

′ ′+ ∇ = −∫ξ g ξ

where, f = f(t, x, y, z, ξx, ξy, ξz) is the distribution function and f, f1, f′, f1′, correspond to the molecules 

with the velocities before ξ, ξ1 and after ξ', ξ1′ collisions, g is the relative velocity of the molecules in 

binary collisions 1| | | |= = −g g ξ ξ , and b - the impact parameter and ε is the azimuth angle for the 

binary collisions [1, 2]. 

From the above equation, we easily can obtain all the macroscopic parameters from the definition 

of the function f. For example, the number of molecules in a unit volume of the gas is 

( , ) ( , , )n t f t d= ∫r r ξ ξ

The mean velocity of the molecules, the tensor, and the energy flux is determined by as below 
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here c = ξ – V is the thermal velocity of the molecules.

The mean energy of the heat flux of molecules can be described in terms of the temperature
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The expressions for the components of the thermal velocity 

can be obtained by simulating the normally distributed 

random variable
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here, αk is independent random numbers that are uniformly 

distributed on the interval 0 and 1. 

The algorithm of the Monte Carlo method is as follows:

1. Constant data entry.

2. ��Defining the boundaries of entry of the molecule in the 

computational domain.

3. ��Calculating the coordinates of the point of entry and the 

velocities of molecules.

4. ��Calculating the coordinates of an intersection of the 

trajectory of the molecule with the surface of the body 

and calculating the momentum transfer.

5. ��Calculating the rate of the reflected molecules and 

calculating the reactive pulse.

6. ��Implementation of steps 4-5 to escape molecule from 

computational domain.

7. Data Averaging.

The velocities of the particles after the collision are chosen 

according to the molecular interaction models. Although the 

efficiency of the method depends on many parameters of 

the computation scheme (relaxation, splitting with respect 

to time, stabilization, time step, space grid, and so on), the 

main studies devoted to the improvement of the method 

focus on the improvement of the collision procedure and 

on reducing the statistical error because this is the main 

instrument that makes it possible to reduce the number of 

particles in the cells and thus decrease the computation time 

and the requirements for computer memory. One of the 

features of the method proposed appears to be the fact, that 

due to the computer memory in the number of molecules 

are 106 in the cell. At this stage it is considered necessary to 

carry out the transformation of the velocities.

3. ��The description of gas-surface interaction 
models

The problem of interaction of gases with surfaces occupies 

an important role in aerodynamics. Diffuse reflection with 

complete momentum and energy accommodation is most 

frequently used in DSMC method. In a diffuse reflection, the 

molecules are reflected equally in all directions usually with 

a complete thermal accommodation. The problem of gas-

surface interaction takes an essential role in aerodynamics. 

The role of laws of molecular interaction with surfaces is 

shown more strongly than more gas is rarefied [3]. 

The boundary conditions for Boltzmann equation are 

the conditions relating the distribution function of incident 

and reflected molecules. The most popular gas-surface 

interaction model for kinetic theory is specular and diffuse 

reflection model developed by Maxwell (1879). This model 

is based on the assumption that the portion (1 – στ) of 

molecules reflected specularly from the surface, and the rest 
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part στ of the molecule diffusely. The density of distribution 

of reflected molecules is set as follows:

The boundary conditions for Boltzmann equation are the conditions relating the distribution 

function of incident and reflected molecules. The most popular gas-surface interaction model for 

kinetic theory is specular and diffuse reflection model developed by Maxwell (1879). This model is 

based on the assumption that the portion (1 – στ) of molecules reflected specularly from the surface, 

and the rest part στ of the molecule diffusely. The density of distribution of reflected molecules is set 

as follows:
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Here, ξr –velocity vector of the reflected molecules, δ – Dirac delta-function, n –outward unit 

normal to the surface xw, hr - most probable velocity of molecules at a temperature Tw. Indexes i and r

denote the quantities for the incident and reflected fluxes, and an index w - the value corresponding to 

diffuse reflection at temperature of wall Tw. Parameter 0 ≤ στ ≤ 1 in Maxwell model defines 

accommodation coefficient for the tangential momentum. For complete specular reflection στ = 0 and 

for complete diffuse reflections στ = 1. 
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τ
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−

=

Popularity of Maxwell model is due to its simplicity and with the fact that it satisfies the principle 

of detailed balance. Maxwell’s model is suitable for low speed experiments and low rarefaction 

environments.

The velocity vector components at diffuse reflection are modelled on a local spherical coordinate 

system which axis is directed along outward unit normal to the surface, by means of expressions [4]
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energy is defined in terms of incident and reflected fluxes as follows
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Here I0 –first type Bessel function, ξni, ξnr – molecular 
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here ξτi, ξτr – molecular velocities of tangent to surface for 

the incident and reflected molecules. Twenty years after 

the creation CL model, the modification of CL model called 

Cercignani-Lampis-Lord model (CLL) have been published 

[6, 7]. Usage of CL model transformation expands to 

account for rotational energy exchange between gas and 

surface. Then, updating CLL model in the form of [8] is to 

account for vibrational energy exchange of the reflected 

molecules. 

In Fig. 2, we can see that the agreement is quite good for all 

     

Fig. 1. Comparison between the experimental data [9] and the calculation results by using στ = 0.1, σn

= 0.3 [10] (σn = 0.3, στ = 0.1, θ = 15°, 22.5°, 30° and 45°)
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incident angles with the same values of the accommodation 

coefficients στ = 0.1 and σn = 0.3 [9, 10]. Data taken from 

the experiment with a beam of argon at 295 K, and in the 

platinum at 1081 K. Four polar diagrams related to four 

different angles of incidence, and represented the inclination 

of the scattered molecules in the plane of incidence. The 

circles correspond to the experimental data, and the curves 

were calculated using the scattering kernel. 

Let’s see an expression to find the velocity components 

of the reflected molecules. Let αi - independent random 

numbers uniformly distributed on (0, 1). For the normal 

component of the velocity
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beam of argon at 295 K, and in the platinum at 1081 K. Four polar diagrams related to four different 

angles of incidence, and represented the inclination of the scattered molecules in the plane of 

incidence. The circles correspond to the experimental data, and the curves were calculated using the 

scattering kernel. 

Let’s see an expression to find the velocity components of the reflected molecules. Let αi -

independent random numbers uniformly distributed on (0, 1). For the normal component of the 

velocity
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In order to simulate the partial surface accommodation, the CLL model was implemented into this 

DSMC calculation. The CLL model is derived assuming momentum components. The two adjustable 

parameters appearing in the CLL model are the normal component of translational energy αn and the 

tangential component of momentum στ. However, in the implementation of the CLL model in the 
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In order to simulate the partial surface accommodation, 

the CLL model was implemented into this DSMC 

calculation. The CLL model is derived assuming momentum 

components. The two adjustable parameters appearing in 

the CLL model are the normal component of translational 

energy αn and the tangential component of momentum στ. 

However, in the implementation of the CLL model in the 

DSMC method, Bird has shown that it is equivalent to specify 

the normal αn and tangential στ components of translational 

energy, since ατ=στ(2−στ), and thus στ<ατ, assuming that στ 

lies between 0 and 1. For molecular velocity distributions, 

the Maxwell and CLL models gave similar ξx distributions, 

but distinct ξy distributions, at partial levels of gas-surface 

accommodation. Moreover, while the Maxwell scattering 

distributions experienced abrupt changes with increasing 

accommodation and position, the CLL distributions varied 

smoothly. For no significant additional cost, the CLL model 

gave more realistic scattering distributions [11]. CLL model is 

widely recognized examples of its application are presented 

in multiple works [11-28]. 

At the molecular level, it is necessary to consider interaction 

potentials, using electron-nuclear representations. Empirical 

potential dependences reflect the fact, that attractive forces 

at large distance and repulsive forces at short distances. 

This feature is reflected most simply with Lennard-Jones 

potential. The sixth power is the attractive potential. The 

twelfth-power is repulsive potential. 
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components of translational energy, since ατ=στ(2−στ), and thus στ<ατ, assuming that στ lies between 
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while the Maxwell scattering distributions experienced abrupt changes with increasing 
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the CLL model gave more realistic scattering distributions [11]. CLL model is widely recognized 

examples of its application are presented in multiple works [11-28]. 

At the molecular level, it is necessary to consider interaction potentials, using electron-nuclear 

representations. Empirical potential dependences reflect the fact, that attractive forces at large distance 

and repulsive forces at short distances. This feature is reflected most simply with Lennard-Jones 

potential. The sixth power is the attractive potential. The twelfth-power is repulsive potential. 
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when πr2 = d the potential is equal to zero. The value ε characterizes potential of the depth. It’s shown 

that this model qualitatively correctly described the behavior of aerodynamic characteristics [3, 23].

4. Results and discussions

The calculation has been carried out through the method described in the previous section within 

the range of angles of attack α from − 90° to +90° with an angle step 5°. The parameters of the 

problem are the following: ratio of heat capacities γ = 1.4; temperature factor tw = Tw/T0 = 0.04; 

velocity ratio M∞ = 20, energy accommodation coefficient σn = 0.5, 0.75, 1; momentum 

accommodation coefficient στ = 0.5, 0.75, 1.

The body surface of geometry is reorganized into the format Stereo Lithography (STL). It was 

carried out with the help of engineering software program SolidWorks. The format STL proves to be 

sufficiently simple and supports the property of a solid body. 

In the Fig. 3 presented the results of the calculation of the coefficients of drag force Cx, lift force Cy
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model qualitatively correctly described the behavior of 
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4. Results and discussions

The calculation has been carried out through the method 

described in the previous section within the range of 

angles of attack α from -90˚ to +90˚ with an angle step 5˚. 
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heat capacities γ = 1.4; temperature factor tw = Tw/T0 = 0.04; 
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= 0.5, 0.75, 1.

The body surface of geometry is reorganized into the 

format Stereo Lithography (STL). It was carried out with 

the help of engineering software program SolidWorks. The 

format STL proves to be sufficiently simple and supports the 

property of a solid body. 

In the Fig. 3 presented the results of the calculation of 

the coefficients of drag force Cx, lift force Cy with the value 

of angle of attack α from 0˚ to 30˚ for reentry vehicle (Fig. 

2) by using the DSMC method with the use of two gas-

surface interaction models (Maxwell, Cercignani-Lampic-

Lord). The parameters of the reentry vehicle: half cone 

angle: 60˚; nose bluntness ratio (radius of nose/ radius of 

base): 0.25.

In the Fig. 5 presented the results of the calculation of the 

coefficients of drag force Cx, lift force Cy with the value of 

angle of attack α from -90˚ to +90˚ for aerospace vehicle (Fig. 

     

Fig. 1. Comparison between the experimental data [9] and the calculation results by using στ = 0.1, σn
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Fig. 2. Geometrical view of reentry vehicle

 

Fig. 3. Dependencies of Cx (α) and Cy (α) for reentry vehicle

15 

Fig. 2. ��Geometrical view of reentry vehicle 

(1~7)15-005.indd   4 2016-04-04   오전 10:35:23



5

Yuri Ivanovich Khlopkov    Effects of Gas-surface Interaction Models on Spacecraft Aerodynamics

http://ijass.org

4) by using the DSMC method with the use of two gas-surface 

interaction models. From these results we can explain that 

the values of coefficients of drag force and lift force by CLL 

model are less than by Maxwell model. The values are the 

same when the accommodation coefficients are equal to 

zero or one. In fact that for ατ  = 1 in Maxwell model and ατ  

= αn = 1 in the CLL model, the two models give precisely 

the same results. Otherwise, the CLL model gives higher 

aerodynamic forces than the Maxwell model respectively at 

different accommodation coefficients.

Figure 6 shows the dependence of Cx(α) with the use of 

various molecular interactions with surfaces. Coefficient 

Cx increases with the rise of the angle of attack. Multiple 

reflections are not considered, for a given body, they are 

unimportant at angle of attack. From these graphs, it is clear 

that the values of the coefficients are sensible different at 

various gas-surface interaction models.
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5. Conclusions

The Maxwell model and the Cercignani-Lampis-Lord 

(CLL) model have fundamental differences and they give 

similar predictions of aerodynamic forces on various 

vehicle designs. The interaction potential (Lennard-Jones) 

for aerodynamics calculation is proposed. The coefficients 

of forces and moments are sensitive not only to variations 

accommodate properties of the surface, but also in the 

details of the distribution of velocities of the molecules 

reflected normally at the same accommodation coefficient 

of tangential momentum. The impact of these factors is 

comparable and should be considered together. CLL model 

gives the coefficients of forces and moments, lying closely 

to the case of completely diffuse reflection. The calculations 

with different accommodation coefficients provide more 

sensitive for the aerothermodynamics quantities of 

aerospace vehicles.

The investigation provides better understanding of the 

effects of gas-surface interaction models in high-altitude 

aerodynamics and ultimately a better understanding of the 

accommodation coefficients of materials and gas flows for 

orbital conditions. 
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