• Title/Summary/Keyword: Free water surface flow

Search Result 270, Processing Time 0.024 seconds

A study on flow characteristics in a partially filled open channel (비만관 개수로 유동 특성 연구)

  • Choi, Jung-Geun;Sung, Jae-Yong;Lee, Myeong-Ho;Lee, Suk-Jong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.73-77
    • /
    • 2006
  • Flow rate measurement is one of the difficult problems in the industrial applications. Especially, flow rate in a partially filled pipeline is affected by many parameters such as water level, channel slop, etc. In the present study, prior to the development of a flowmeter, the flow characteristics has been investigated by particle image velocimetry (PIV) measurements. Three-dimensional velocity distributions were obtained from sectional measurements of velocity profiles according to the water level. As a result, it is found that there is no similarity in the velocity profile when the lateral position is changed. In addition, the maximum velocity does not always occur on the free surface. It depends on the water level. In the aspect of flow rate measurement, the previous calculus based upon point measurement techniques is proved to be inaccurate because of the lack of whole flow information.

  • PDF

The Flow Field of Undershot Cross-Flow Water Turbines Based on PIV Measurements and Numerical Analysis

  • Nishi, Yasuyuki;Inagaki, Terumi;Li, Yanrong;Omiya, Ryota;Hatano, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.174-182
    • /
    • 2014
  • The ultimate objective of this study is to develop a water turbine appropriate for low-head open channels to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of a cross-flow runner to open channels as an undershot water turbine has been considered and, to this end, a significant simplification was attained by removing the turbine casing. However, the flow field of an undershot cross-flow water turbine possesses free surfaces, and, as a result, the water depth around the runner changes with variation in the rotational speed such that the flow field itself is significantly altered. Thus, clear understanding of the flow fields observed with free surfaces to improve the performance of this turbine is necessary. In this study, the performance of this turbine and the flow field were evaluated through experiments and numerical analysis. The particle image velocimetry technique was used for flow measurements. The experimental results reflecting the performance of this turbine and the flow field were consistent with numerical analysis. In addition, the flow fields at the inlet and outlet regions at the first and second stages of this water turbine were clarified.

A three-dimensional numerical model for shallow water flows using a free surface correction method (자유수면 보정기법을 이용한 3차원 천수유동 수치모형)

  • Jang, Won-Jae;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.181-185
    • /
    • 2007
  • A free-surface correction(FSC) method is presented to solve the 3-D shallow water equations. Using the mode splitting process, FSC method can simulate shallow water flows under the hydrostatic assumption. For the hydrostatic pressure calculation, the momentum equations are firstly discretized using a semi-implicit scheme over the vertical direction leading to the tri-diagonal matrix systems. A semi-implicit scheme has been adopted to reduce the numerical instability caused by relatively small vertical length scale compare to horizontal one. and, as the free surface correction step the final horizontal velocity fields are corrected after the final surface elevations are obtained. Finally, the vertical final velocity fields can be calculated from the continuity equation. The numerical model is applied to the calculation of the simulation of flow fields in a rectangular open channel with the tidal influence. The comparisons with the analytical solutions show overall good agreements between the numerical results and analytical solutions.

  • PDF

Numerical Investigation of Anti-Diffusion Source Term for Free-Surface Wave Flow

  • Park, Sunho;Lee, Heebum;Rhee, Shin Hyung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.48-60
    • /
    • 2016
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley and KCS model ships. In results, the wave patterns and hull wave profiles of the Wigley and KCS model ships for various anti-diffusion coefficients showed quite close patterns. While, the band width of the water volume-fraction values between 0.1 to 0.9 at the Wigley and KCS model hull surfaces was narrowed by considering the anti-diffusion term. From the results, anti-diffusion source term decreased free-surface smearing.

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Visualization of Air Absorption Induced by Free Surface Vortex in the Pump Sump Using Multi-phase Flow Simulation (펌프 섬프장내 자유표면 보텍스에 의한 공기흡입 현상의 가시화)

  • Park, Young-Kyu;Li, Kui. Ming.;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • In this study the change of free surface vortex is expressed through the time volume fraction using multiphase unsteady condition in sump, because in previous studies of the pump sump did not represent the behavior of the free surface vortex exactly due to the reason it was calculated using single phase and steady condition. The reliability of the computational analysis is verified through comparing experimental results with that of present numerical analysis. Homogeneous free surface model is used to apply interactions of air and water. The results show that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5%. The vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. The behavior of free surface vortex at numerical analysis is quite similar to experimental test. The result of vortex motion according to time, works on a cycle.

Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement (형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

On the Flow Characteristics around a Circular Cylinder according as the Water Depth from the Free Surface (자유수면에 인접한 원형실린더형 몰수체 주위의 유동특성에 관한 연구)

  • Gim, Ok-Sok;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • The free surface influenced the wake behind a circular cylinder and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured in this paper. The measured results has been compared with each other to investigate the flow characteristics of the circular cylinder's 2-dimensional section at $Re=1.0{\times}10^3$ using 2-frame grey level cross correlation PIV method. The flow around the circular cylinder with free surface affected the wake structure. Especially, in case of d=1.0D, the boundary layer was measured in the whole area. The separation point and boundary layer of the circular cylinder could be controlled by the water depth.

Physical Model Investigation of a Compact Waste Water Pumping Station

  • Kirst, Kilian;Hellmann, D.H.;Kothe, Bernd;Springer, Peer
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • To provide required flow rates of cooling or circulating water properly, approach flow conditions of vertical pump systems should be in compliance with state of the art acceptance criteria. The direct inflow should be vortex free, with low pre-rotation and symmetric velocity distribution. Physical model investigations are common practice and the best tool of prediction to evaluate, to optimize and to document flow conditions inside intake structures for vertical pumping systems. Optimization steps should be accomplished with respect to installation costs and complexity on site. The report shows evaluation of various approach flow conditions inside a compact waste water pumping station. The focus is on the occurrence of free surface vortices and the evaluation of air entrainment for various water level and flow rates. The presentation of the results includes the description of the investigated intake structure, occurring flow problems and final recommendations.

Computation of Water and Air Flow with Submerged Hydrofoil by Interface Capturing Method

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.789-795
    • /
    • 2000
  • Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are simulated numerically, considering two-fluid flows of both water and air. The computation is performed by a finite volume method using unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell wise local mesh refinement. The integration in space is of second order, based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels. The linear equations are solved by conjugate gradient type solvers, and the non-linearity of equations is accounted for through Picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations, the continuity equation, the conservation equation of one species, and the equations for two turbulence quantities. Finally, a comparison is quantitatively made at the same speed between the computation and experiment in which the grid sensitivity is numerically checked.

  • PDF