• Title/Summary/Keyword: Free water surface

Search Result 785, Processing Time 0.024 seconds

Optimizing Boiling Condition for the Preparation of Fish Extracts

  • Park Seong Min;Lee Keun Tai;Yoon Ho Dong;Ryu Hong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.8-11
    • /
    • 1999
  • The optimum boiling condition was determined for fish extracts by response surface model. Model equations were designed with effect of time (T) and the amount of added water (W) on the level of released free amino acid. Based on the high (>0.9) coefficient of determination and low (<0.01) level of significant, those model was approved to be significant. The added water amount of higher regression coefficient $ (\beta_2)$, showed a greater influence on releasing free amino acids than boiling time. The optimum boiling times are 6 hours for crucian carp, 5 hours for bastard halibut, 7 hours for loach and 5 hours for jacopever. The ratio of added water to sample 1 (v/w) could be applied to all fish samples at $100\pm2^{\circ}C$.

  • PDF

Numerical simulation of wave slamming on wedges and ship sections during water entry

  • Ma, Zhihua;Qian, Ling
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.183-199
    • /
    • 2018
  • The open source software OpenFOAM is utilised to simulate the water entry and hydrodynamic impact process of 2D wedges and ship hull sections. Incompressible multiphase flow solver interDyMFoam is employed to calculate the free fall of structure from air into water using dynamically deforming mesh technique. Both vertical and oblique entry of wedges of various dead-rise angles have been examined. A convergence study of dynamics as well as kinematics of the flow problem is carried out on successively refined meshes. Obtained results are presented and compared to the experimental measurements showing good agreement and reasonable mesh convergence of the solution.

A Potential-Based Panel Method for the Analysis of Resistance Characteristics of a High Speed Catamaran (포텐셜기저 패널법에 의한 고속쌍동선의 저항성능 해석)

  • Kim, Y.G.;Rhyu, S.S.;Yoo, J.H.;Lew, J.M.;Hong, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.12-20
    • /
    • 1997
  • A potential-based panel method has been developed to investigate the resistance characteristics of a high speed catamaran advancing on the free surface. Normal dipoles and sources are distributed on the body surface while sources are distributed on the free surface. Linearised free surface conditions are used in the present analysis. To avoid the instabilities due to the velocity difference between inner and outer flow of a high speed catamaran, Kutta condition has been applied at the stern. Model test has been carried out not only to validate the numerical results but to confirm the capabilities of a CWC(Circulating Water Channel). It is believed that we can obtain the qualitatively reasonable results in the CWC. Computed results are compared with those of experiments and Insel's experimental values. Since the Kutta condition is applied at the stern, stable solutions are obtained at the high speed range. The present method, using linearised free surface conditions at the high speed range, seems to be a useful tool in the hull form design of a high speed catamaran.

  • PDF

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows (댐 붕괴 유동에 미치는 표면 거칠기와 난류강도 변화의 영향 연구)

  • Park, Il-Ryong;Jung, Kwang-Hyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-253
    • /
    • 2012
  • Dam-break flows, a type of very shallow gravity-driven flow, are substantially influenced by resistance forces due to viscous friction and turbulence. Assuming turbulent flow, the main focus of this study is to validate the increase of drag forces caused by surface roughness and especially turbulence intensity. A Reynolds Averaged Navier-Stokes(RANS) approach with the standard k-${\varepsilon}$ turbulence model is used for this study, where the free surface motion is captured by using a volume of fluid(VOF) method. Surface roughness effects are considered through the law of the wall modified for roughness, while the initial turbulence intensity which determines the lowest level of turbulence in the flow domain of interest is used for the variation of turbulence intensity. It has been found that the numerical results at higher turbulence intensities show a reasonably good agreement with the physical aspects shown by two different dam-break experiments without and with the impact of water.

Experimental Study of Shape Parameter of Land-based OWC Wave Energy Converter (고정식 진동 수주형 파력 발전기(OWC) 형상 파라미터의 실험 연구)

  • Koo, Weon-Cheol;Kwon, Jin-Sung;Kim, Jun-Dong;Kim, Sung-Jae;Kim, Min-Woo;Choi, Mun-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • The aim of this experimental study was to analyze the effect of the shape parameters and chamber pressure of a land-based oscillating water column (OWC) in regular incident waves. The magnitude of the free surface elevations inside the chamber was measured in a two-dimensional wave tank for various chamber skirt drafts and bottom slope angles. The surface elevations were also measured under both open chamber and partially open chamber conditions. From these measurements, the optimum shape of the OWC device could be predicted for the maximum wave energy conversion efficiency. It was found that the resonance frequency of the OWC system associated with incident waves moved toward the long wave region with increments of the draft of the chamber skirt and bottom slope. The behavior of the free surface elevation inside the chamber was also found to be dependent on the chamber pressure.

Analysis of water purification in the FWS wetland for Agreculture Area (농업지역 내 FWS 인공습지의 수질정화효율 분석)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.39-47
    • /
    • 2010
  • Annually, the scale of agricultural areas in Korea were being reduced as the lands were converted to other land uses. While the rate of productivity were either being maintained or increased, the pollution load from these areas were still greater in magnitude. Although the levels of pollutant concentration released in the agricultural watersheds were minimal, the combined quantities mostly from diffuse sources were high. As a consequence, the Ministry of Environment (MOE) in Korea adopted the use of free water surface (FWS) flow constructed wetlands to reduce the pollutant loadings emitted from agricultural watersheds for the improvement of water quality and protection of aquatic ecosystems. In this study, a constructed wetland treating stream water in an agricultural watershed was monitored since April 2009 subsequent to its completion in December 2008. Satisfactory performance was achieved for TSS, BOD and TP with 26%, 28% and 39% pollutant removal rates, respectively. In addition, the effluent water quality was improved and achieved compliance the national water quality criteria. Results of this study can be useful to establish design parameters and employ proper removal techniques of similar natural treatment systems for future implementation in the country.

SIMULATION OF RELATIVE MOTION OF FLOATING BODIES INCLUDING EFFECTS OF A FENDER AND A HAWSER (방현재와 계류삭 효과를 고려한 부유체의 상대운동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A developed code is applied to simulate relative motion of floating bodies in a side-by-side arrangement, including effects of a fender and a hawser. The developed code is based on the flux-difference splitting scheme for immiscible incompressible fluids and the hybrid Cartesian/immersed boundary method. To validate the developed code for free surface flows around deforming boundaries, the water wave generation is simulated, which is caused by bed movement. The computed wave profile and time histories of wave elevation are compared with other experimental and computational results. The effects of a fender and a hawser are modeled by asymmetric force acting on the floating bodies according to a relative displacement with the bounds, in which the fender and the hawser exert no force on the bodies. It has been observed that the floating body can be accelerated by a gap flow due to a phase difference caused by the free surface. Grid independency is established for the computed time history of the body velocity, based on three different size grids.

Numerical Simulation of Free Surface Flows Using the Roe's Flux-difference Splitting Scheme (Roe의 Flux-difference Splitting 기법을 이용한 자유표면 유동 모사)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • A code is developed to simulate incompressible free surface flows using the Roe's flux-difference splitting scheme. An interface of two fluids is considered as a moving contact discontinuity. The continuities of pressure and normal velocity across the interface are enforced by the conservation law in the integral sense. The fluxes are computed using the Roe's flux-difference splitting scheme for two incompressible fluids. The interface can be identified based on the computed density distribution. However, no additional treatment is required along the interface during the whole computations. Complicated time evolution of the interface including topological change can be captured without any difficulties. The developed code is applied to simulate the Rayleigh-Taylor instability of two incompressible fluids in the density ratio of 7.2:1 and the broken dam problem of water-air. The present results are compared with other available results and good agreements are achieved for the both cases.

Characteristics of Nutrient Uptake by Water Plants in Free Water Surface Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 처리를 위한 자유수면형 인공습지에서 수생식물의 영양염류 흡수특성 평가)

  • Kang, Se-Won;Seo, Dong-Cheol;Choi, Ik-Won;Lee, Jun-Bae;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Kim, Sang-Don;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.304-309
    • /
    • 2011
  • BACKGROUND: Generally, water plants may play an important role in nutrients(N, P) removal in constructed wetlands(CWs). Previous studies considered nutrients uptake by water plants in various CWs for treating point source pollution. On the other hand, few studies considered nutrients uptake by water plants in free water surface(FWS) CWs for treating non-point source pollution. METHODS AND RESULTS: To investigate characteristics of nutrient uptake by water plants in FWS CWs, dry weights, nutrients content and nutrients uptake by water plants were investigated from April, 2008 to October, 2008. Dominance plants were Phragmites japonica STEUD (PHRJA), Nymphaea tetragona ANGUSTA(NTMTE), Typha orientalis PRESL(TYHOR), Phragmites communis TRINIUS(PHRCO) and Zizanis latifolia TURCZ(ZIZLA) in FWS CWs. The dry weights of water plants in August were higher in the order of TYHOR(54.27 g/plant) > PHRJA(44.30 g/plant) ${\geqq}$ PHRCO(39.60 g/plant) ${\geqq}$ ZIZLA(37.80 g/plant) ${\fallingdotseq}$ NTMTE(36.75 g/plant). The T-N and T-P contents by water plants were not significantly differences regardless of cultivation period. The maximum amount of T-N uptake by water plants in August were 773 mg/plant for PHRJA, 625 mg/plant for NTMTE, 1206 mg/plant for TYHOR, 754 mg/plant for PHRCO and 768 mg/plant for ZIZLA. The maximum amounts of T-P uptake by PHRJA, NTMTE, TYHOR, PHRCO and ZIZLA were 397, 177, 411, 261 and 229 mg/plant in August, respectively. CONCLUSION(s): The results of this study suggest that optimum water plant was Typha orientalis PRESL in free water surface constructed wetlands.