• Title/Summary/Keyword: Free volume theory

Search Result 192, Processing Time 0.021 seconds

Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study

  • AlSaid-Alwan, Hiyam Hazim Saeed;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • In engineering structures, to having the projected structure to serve all the engineering purposes, the theory to be used during the modeling stage is also of great importance. In the present work, an analytical solution of the free vibration of the beam composed of functionally graded materials (FGMs) is presented utilizing different beam theories. The comparison of supposed beam theory for free vibration of functionally graded (FG) beam is examined. For this aim, Euler-Bernoulli, Rayleigh, Shear, and Timoshenko beam theories are employed. The functionally graded material properties are assumed to vary continuously through the thickness direction of the beam with respect to the volume fraction of constituents. The governing equations of free vibration of FG beams are derived in the frameworks of four beam theories. Resulting equations are solved versus simply supported boundary conditions, analytically. To verify the results, comparisons are carried out with the available results. Parametrical studies are performed for discussing the effects of supposed beam theory, the variation of beam characteristics, and FGM properties on the free vibration of beams. In conclusion, it is found that the interaction between FGM properties and the supposed beam theory is of significance in terms of free vibration of the beams and that different beam theories need to be used depending on the characteristics of the beam in question.

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

A higher order shear deformation theory for static and free vibration of FGM beam

  • Hadji, L.;Daouadji, T.H.;Tounsi, A.;Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.507-519
    • /
    • 2014
  • In this paper, a higher order shear deformation beam theory is developed for static and free vibration analysis of functionally graded beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present higher-order shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Different higher order shear deformation theories and classical beam theories were used in the analysis. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.

Numerical analysis for free vibration of functionally graded beams using an original HSDBT

  • Sahouane, Abdelkader;Hadji, Lazreg;Bourada, Mohamed
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • This work presents a free vibration analysis of functionally graded beams by employing an original high order shear deformation theory (HSDBT). This theory use only three unknowns, but it satisfies the stress free boundary conditions on the top and bottom surfaces of the beam without requiring any shear correction factors. The mechanical properties of the beam are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. In order to investigate the free vibration response, the equations of motion for the dynamic analysis are determined via the Hamilton's principle. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research.