• Title/Summary/Keyword: Free surface wave

Search Result 532, Processing Time 0.033 seconds

A Study on the Numerical Radiation Condition in the Steady Wave Problem (정상파 문제의 방사조건에 관한 연구)

  • Lee, Gwang-Ho;Jeon, Ho-Hwan;Seong, Chang-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP (선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구)

  • Eom T.J.;Lee Y.-G.;Jeong K.-L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

A Study of Numerical Wave Tank for 3-Dimensional Free Surface Wave Simulation (3차원 자유표면파 모사를 위한 수치 파수조에 관한 연구)

  • Ha, Y.R.;Kim, Y.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • The increasing capabilities of the computers enable us to utilize various numerical schemes for the time-domain simulations concerned with 3-dimensional free-surface wave problems. There are still difficulties to solve such kind of problems, however. That's because long time simulations with large computational domain are needed in time-domain analysis. So, we need faster and more efficient numerical schemes to get the solutions practically for these problems. In this paper, a high-order spectral/boundary-element method is used for the numerical investigation of physics involved in wave-body interaction. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. To get the robust study in these topics, various numerical tests are performed and compared with others' works.

Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed (전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Ha, Y.R.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.

Higher-order Spectral Method for Regular and Irregular Wave Simulations

  • Oh, Seunghoon;Jung, Jae-Hwan;Cho, Seok-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.406-418
    • /
    • 2020
  • In this study, a nonlinear wave simulation code is developed using a higher-order spectral (HOS) method. The HOS method is very efficient because it can determine the solution of the boundary value problem using fast Fourier transform (FFT) without matrix operation. Based on the HOS order, the vertical velocity of the free surface boundary was estimated and applied to the nonlinear free surface boundary condition. Time integration was carried out using the fourth order Runge-Kutta method, which is known to be stable for nonlinear free-surface problems. Numerical stability against the aliasing effect was guaranteed by using the zero-padding method. In addition to simulating the initial wave field distribution, a nonlinear adjusted region for wave generation and a damping region for wave absorption were introduced for wave generation simulation. To validate the developed simulation code, the adjusted simulation was carried out and its results were compared to the eighth order Stokes theory. Long-time simulations were carried out on the irregular wave field distribution, and nonlinear wave propagation characteristics were observed from the results of the simulations. Nonlinear adjusted and damping regions were introduced to implement a numerical wave tank that successfully generated nonlinear regular waves. According to the variation in the mean wave steepness, irregular wave simulations were carried out in the numerical wave tank. The simulation results indicated an increase in the nonlinear interaction between the wave components, which was numerically verified as the mean wave steepness. The results of this study demonstrate that the HOS method is an accurate and efficient method for predicting the nonlinear interaction between waves, which increases with wave steepness.

Simulation of Nonlinear Water Waves using Boundary Element Method (경계요소법을 이용한 비선형파의 재현)

  • 오영민;이길성;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.204-211
    • /
    • 1993
  • Boundary element method is applied to simulate nonlinear water waves using Green's identity formula in a numerical wave flume. A system of linear equations is formulated from the governing equation and free surface boundary conditions in order to calculate velocity potential and water surface elevation at each nodal point. The velocity square terms are included in the dynamic free surface boundary condition. The free surface is treated as a moving boundary. the vertical variation of velocity potential being considered in calculating the time derivative of the velocity potential at the free surface. The present method is applied to simulate solitary wave and Stokes 2nd order wave, and shows excellent agreements with their theoretical values.

  • PDF

Wave Excitations on a Body in a Bifurcated Three-Dimensional Channel

  • Cho Song Pyo;Kyoung Jo hyun;Bai Kwang June
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-192
    • /
    • 2003
  • A numerical method for a wave diffraction problem in three-dimensional channels is developed. The physical models are various shapes of channel connected to the open sea. When a ship or an offshore structure is moored in various configurations of channel connected to an open sea, the prediction of the hydrodynamic force exerting on the moored ship could be important for the prediction of its motion. It is assumed that the fluid is inviscid and incompressible and its motion is irrotational. From the continuity equation, the Laplace equation can be obtained as the governing equation. The surface tension at free surface is neglected, and wave amplitude is assumed to be small compared to the wave length. Then the free surface condition can be linearized. The numerical method used here is the localized finite element method based on a variational formulation

  • PDF

Numerical study on supercavitating flow in free stream with regular waves

  • Li, Da;Lyu, Xujian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.799-809
    • /
    • 2020
  • In this study, the supercavitating flow of a high-velocity moving body near air-water surface is calculated and analyzed based on a commercial CFD software ANSYS Fluent. The effect of regular wave parameters including both wave height and wavelength on the cavitating flow and force characteristics of a body at different velocities is investigated. It is found that the cavity shape, lift coefficient and drag coefficient of the body vary periodically with wave fluctuation, and the variation period is basically consistent with wave period. When the wavelength is much greater than the cavity length, the effect of wave on supercavitation is the alternating effect of axial compression and radial compression. However, when the wavelength varies around the cavity length, the cavity often crosses two adjacent troughs and is compressed periodically by the two wave troughs. With the variation of wavelength, the average area of cavity shows a different trend with the change of wave height.

A NUMERICAL SIMULATION METHOD FOR FREE SURFACE FLOWS NEAR MOVING BODIES IN A FIXED RECTANGULAR GRID SYSTEM (고정된 직사각형 격자계에서 움직이는 물체주위 자유수면유동 계산을 위한 수치기법의 개발)

  • Jeong, K.L.;Lee, Y.G.;Ha, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.395-406
    • /
    • 2011
  • In this research a numerical simulation method is developed for moving body in free surface flows using fixed staggered rectangular grid system. The non-linear free surface near the body is defined by marker-density method. The body boundary is defined by line segment connecting the points where the body surface and grid line meet. Continuity equation and Navier-Stokes equations are used as governing equations and the equations are coupled with two-step projection method. The velocities and pressures of body boundary and free surface cells are calculated with simultaneous iterative method. To treat a body movement in a fixed grid system, the volume displaced by moving body is added to the divergence of the body boundary cell. For the verification of the present numerical method. vortex shedding period of advancing cylinder is calculated and the period is compared with existing experiment results. Moreover, added mass and damping coefficients of a vertically excited box are calculated and the computed results are compared with published experiment results. Impulsive pressure and water level variation due to sloshing phenomenon are simulated and the results are compared with published experiment results. Varying the plunger shape, the waves generated by plunging type wave maker are compared with the 2nd order Stokes wave theory The plunger shape generating the wave that shows the best agreement with the theory is represented.

  • PDF