• 제목/요약/키워드: Free falling

검색결과 124건 처리시간 0.032초

고추의 동시탈종(同時脫種) 건조방법(乾燥方法)의 개발(開發)에 관한 연구(硏究) -제1보 고추씨의 분리방법(分離方法)과 운동량(運動量)의 분석(分析)- (Development of a Simultaneous Seed Separation and Drying Method of Red Pepper -Part I. Red Pepper Seed Separation Methods and Their Momentum Analysis-)

  • 전재근;박상기
    • 한국식품과학회지
    • /
    • 제9권1호
    • /
    • pp.61-67
    • /
    • 1977
  • 고추씨를 분리(分離)하는 방법(方法)으로 자유낙하(自由落下), 상하진탕, 회전사(回轉篩)를 이용(利用)하는 방법(方法)과 그 기구(機構)에 관(關)하여 연구(硏究)한 결과(結果) 씨의 분리(分離)는 고추에 가(加)해 주는 충격량(衝擊量)으로 설명(說明)할 수있었으며, 이를 운동량(運動量)의 크기로 분석(分析)하였다. 씨의 분리(分離)에 기여(寄與)하는 운동량(運動量)의 영향은 속도(速度)를 얻은 방법(方法)에 따라 상이(相異)하였다. 한편 동일속도하(同一速度下)에서 운동량(運動量)의 씨분리효과(分離?果)를 산출(算出)하였으며, 자유낙하(自由落下), 상하진탕 및 회전사방법(回轉篩方法)에서 각각(各各) $2.50{\times}10^{-6}$, $2.09{\times}10^{-6}$$3.94{\times}10^{-8}$의 값을 보였다. 고추씨의 분리속도(分離速度)의 변화율(變化率)은 고추의 건조속도(乾燥速度)의 변화율(變化率)과 유사한 경시적(經時的) 변화양상(變化樣相)을 갖고 있었다.

  • PDF

Behavior of dry medium and loose sand-foundation system acted upon by impact loads

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.703-721
    • /
    • 2017
  • The experimental study of the behavior of dry medium and loose sandy soil under the action of a single impulsive load is carried out. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depth ratios within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil and then recorded using the multi-recorder TMR-200. The behavior of medium and loose sandy soil was evaluated with different parameters, these are; footing embedment, depth ratios (D/B), diameter of the impact plate (B), and the applied energy. It was found that increasing footing embedment depth results in: amplitude of the force-time history increases by about 10-30%. due to increase in the degree of confinement with the increasing in the embedment, the displacement response of the soil will decrease by about 25-35% for loose sand, 35-40% for medium sand due to increase in the overburden pressure when the embedment depth increased. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency, moreover, soil density increases with depth because of compaction, that is, tendency to behave as a solid medium.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

내진테이블의 중량물 낙하 충격실험 (Weight Drop Impact Tests of Earthquake-Proof Table)

  • 엄태성;허석재;박태원;이상현
    • 한국지진공학회논문집
    • /
    • 제22권7호
    • /
    • pp.369-378
    • /
    • 2018
  • Full-scale seismic retrofit of old and deteriorated masonry buildings requires a lot of cost and time. In such buildings, installing an emergency evacuation space can be considered as an alternative. In this study, requirements of the earthquake-proof table used as an emergency evacuation space for buildings hit by earthquake are investigated. Load conditions required for the table, including the impact effects due to building debris drop, are explained. To investigate the impact effects in more detail, weight drop test is performed for an prototype earthquake-proof table. In the test, the weight of the falling object and free fall height were considered as the main test parameters. The results showed that the duration of impact is very short (0.0226~0.0779sec), and thus the impact forces increase to 15.8~45.2 times the weight of the falling object. Based on these results, design considerations and performance verification criteria of the earthquake-proof table as an emergency evacuation space are given.

자유수면에 낙하하는 물체의 충격압력 변화에 관한 연구 (A Study on the Impact Pressure of a Falling Body upon a Free Surface Water)

  • 이종붕
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.295-304
    • /
    • 2001
  • The hydrodynamic impact problem was studied from 1929 to recent. Especially, Impact pressure is important for the design of the ships and offshore structure and spacecrafts, and under weapons. A ship traveling at high speed or in heavy sea has its bow and bottom damaged by high pressure caused by impact with and detachment from the water surface. Considerable impact may also occur when large waves hit the cross member or deck plate of an offshore structure within the splash zone. Many engineering cases require consideration of impact pressure, the movement of objects and change of the flow field. This study was obtained the pressure distribution of a falling body that is deadrise angle $0^{\circ}$ and deadrise angle $5^{\circ}$ upon a water surface by the experiment with the impact machine. The theoretical equation was obtained the air region and the interface and the water region which devide 3 parties between the body and the water surface for an investigation of the complete phenomena. Pressure distributions and histories compare favorably with available experimental data. The numerical results are similar to the experimental results for the impact force type with Fo(1+$cos{\pi}t/tc$).

  • PDF

임의 선박 단면형상의 입수충격력에 관한 수치적 연구 (Numerical Investigation of the Impact Pressure Acting on Arbitrary Ship Sections Falling into the Water Surface)

  • 살라부즈나;정노택
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.45-53
    • /
    • 2016
  • The interaction between the hull of ship and free surface of water generates important loads during slamming motion. In the present study, the slamming load applied on the sectional surface of two-dimensional arbitrary bodies has been investigated under several falling velocities. This simulation has been done with the commercial CFD software ANSYS FLUENT®. Through the conventional MARINTEK experiments for the benchmark of the simulation, we verified the impact pressure values between the experiments and simulation results. Two arbitrary ship bow section models, Panamax-like(with small convex bulb and flare) and Post panamax-like(with large convex bulb and flare) are also investigated. Simulation results show that a maximum impact pressure on the Post panama-like shape is higher than the Panamax-like shape. According to both a lump of water generated by arbitrary shape and various dead-rise angles of the shape, the pressure picks were enhanced in the simulation.

저중력 환경 모사를 위한 낙하 시험 방법 연구 (Investigation of Drop Test Method for Simulation of Low Gravity Environment)

  • 백승환;유이상;신재현;박광근;정영석;조기주;오승협
    • 한국추진공학회지
    • /
    • 제25권4호
    • /
    • pp.78-87
    • /
    • 2021
  • KSLV 상단의 임무 다각화를 위해서는 저중력 환경에서 액체 추진제의 거동을 정확히 파악하고 있어야 한다. 지상에서 저중력 환경을 모사하는 방법은 자유낙하 방법이 있지만, 공기저항이 항상 동반된다. 공기 저항을 제거하기 위하여 공기 저항 차단캡슐을 이용한 낙하 시험을 진행하였다. 공기 저항 차단캡슐 내부에 시험체를 위치하고 7 m 높이에서 1.2초 동안 낙하하여 시험체의 저중력 환경을 조성하였다. 낙하하는 동안 0.01 g 이하의 중력가속도를 측정하였으며 지표면에 도달하기 전 최소 가속도는 약 0.005 g였다. 추후 낙하 높이 및 낙하 시간이 증가한다면 개선될 수 여지가 있다.

Risk free zone study for cylindrical objects dropped into the water

  • Xiang, Gong;Birk, Lothar;Li, Linxiong;Yu, Xiaochuan;Luo, Yong
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.377-400
    • /
    • 2016
  • Dropped objects are among the top ten causes of fatalities and serious injuries in the oil and gas industry (DORIS, 2016). Objects may accidentally fall down from platforms or vessels during lifting or any other offshore operation. Proper planning of lifting operations requires the knowledge of the risk-free zone on the sea bed to protect underwater structures and equipment. To this end a three-dimensional (3D) theory of dynamic motion of dropped cylindrical object is expanded to also consider ocean currents. The expanded theory is integrated into the authors' Dropped Objects Simulator (DROBS). DROBS is utilized to simulate the trajectories of dropped cylinders falling through uniform currents originating from different directions (incoming angle at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$). It is found that trajectories and landing points of dropped cylinders are greatly influenced by the direction of current. The initial conditions after the cylinders have fallen into the water are treated as random variables. It is assumed that the corresponding parameters orientation angle, translational velocity, and rotational velocity follow normal distributions. The paper presents results of DROBS simulations for the case of a dropped cylinder with initial drop angle at $60^{\circ}$ through air-water columns without current. Then the Monte Carlo simulations are used for predicting the landing point distributions of dropped cylinders with varying drop angles under current. The resulting landing point distribution plots may be used to identify risk free zones for offshore lifting operations.

불안정 상태를 제거한 NoC용 위상차 클럭 동기회로 (Metastability-free Mesochronous Synchronizer for Networks on Chip)

  • 김강철
    • 한국정보통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1242-1249
    • /
    • 2012
  • 본 논문에서는 미래의 온칩통신 구조로 각광받고 있는 NoC의 GALS 클럭 구조에서 불안정 상태를 제거하기 위한 위상차 동기방법과 위상차 동기회로를 제안한다. 제안된 방법은 송신부의 클럭을 입력 스트로브 신호로 사용하고, 송수신부 클럭의 위상차가 불안정 상태 영역에 존재하더라도 샘플링 결과 값에 따라 클럭의 상승 모서리 또는 하강 모서리 중의 하나를 선택하여 불안정 상태를 피할 수 있다. 고장을 삽입한 로직 시물레이션을 통하여 $0^{\circ}{\sim}360^{\circ}$ 위상차에서 불안정 상태에 관계없이 위상차 클럭 동기회로가 잘 동작함을 확인하였다. 그리고 제안된 위상차 클럭 동기회로는 위상 검출기가 필요하지 않아 제어가 간단하며, 모든 회로가 디지털 회로로 구성되어 NoC의 클럭 동기회로에 적합하다.

이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토 (Feasibility Study on Similarity Principle in Discrete Element Analysis)

  • 윤태영;박희문
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.