• Title/Summary/Keyword: Free ammonia

Search Result 217, Processing Time 0.035 seconds

Effects of Ammonia, Urea Plus Calcium Hydroxide and Animal Urine Treatments on Chemical Composition and In sacco Degradability of Rice Straw

  • Fadel Elseed, A.M.A.;Sekine, J.;Hishinuma, M.;Hamana, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.368-373
    • /
    • 2003
  • This experiment was conducted to examine the effects on the composition and rumen degradation in sacco of rice straw treated with animal urine (1 l of 2.9 g N/kg DM straw) and urea plus calcium hydroxide (2% urea plus 0.5% $Ca(OH)_2$/kg DM straw) as a cheap and relatively safe alternative for ammonia (3% ammonia solution/kg DM straw). Mold occurred in urine treated straw, but other treatments were apparently mold-free. All treatments significantly (p<0.05) increased CP content in the straw compared with untreated one. Ammonia-treated straw contained CP at about twice that in urine or urea-calcium hydroxide treated straw. NDF and hemicellulose contents decreased significantly (p<0.05) in all treatments, while ADF and cellulose showed no differences compared with untreated straw. The degradable fraction of DM, CP, NDF, hemicellulose and cellulose was significantly (p<0.05) increased for ammonia and urea-calcium hydroxide treatments than for urine treated or untreated straw except for CP of urine treated straw. Chemical treatment of rice straw increased the readily degradable fraction of CP, while it decreased the slowly degradable fraction for urine or urea-calcium hydroxide treated rice straw. The degradation rate of hemicellulose was significantly (p<0.05) increased for ammonia and urea-calcium hydroxide treatments compared to urine treated or untreated straw. However, no effect on cellulose degradation rate was found by any of the treatments. There was no improvement in the degradation kinetics caused by the urine treatment despite the improvement of the chemical composition. Although the improvement in rumen degradability was less in the urea-calcium hydroxide treatment than in the ammonia treatment, its use may be more desirable because it is less expensive to obtain, less hazardous nature, and readily available. For further improvement it is necessary to investigate the supplementation of slowly degradable nitrogen to ureacalcium hydroxide treated rice straw diet.

Cacao bean husk: an applicable bedding material in dairy free-stall barns

  • Yajima, Akira;Owada, Hisashi;Kobayashi, Suguru;Komatsu, Natsumi;Takehara, Kazuaki;Ito, Maria;Matsuda, Kazuhide;Sato, Kan;Itabashi, Hisao;Sugimura, Satoshi;Kanda, Shuhei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1048-1053
    • /
    • 2017
  • Objective: The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Methods: Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. Results: The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Conclusion: Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns.

Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media (이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process (준혐기-호기 생물막 공정을 이용한 돈사폐수 처리)

  • 임재명;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

Chemical Components in Peel and Flesh of Trifoliate Oranges(Poncirus trifoliata) (탱자 과피와 과육의 성분특성)

  • Chung Hun-Sik;Lee Joo-Baek;Seong Jong-Hwan;Choi Jong-Uck
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.342-346
    • /
    • 2004
  • Chemical components in the peel and flesh of full riped trifoliate oranges(Poncirus trifoliata) were investigated. Contents of crude protein, crude fat and ash in peel and flesh were 5.15 and 3.31$\%$, 3.82 and 6.65$\%$, 2.62 and 2.09$\%$, respectively. Vitamin C contents were 4.70 mg$\%$ in peel and 70.93 mg$\%$ in flesh. Free sugars were fructose, glucose and sucrose, the level of each or total free sugars was twice higher in peel than in flesh. Organic acids were citric acid, malic acid and oxalic acid, the total contents in peel and flesh were 0.35 and 1.25$\%$, respectively. Free amino acids were aspartic acid, histidine, tyrosine, arginine, valine, lysine, ammonia, cysteine, alanine, glutamic acid, isoleucine, leucine in peel, and lysine, valine, ammonia, arginine, tyrosine, isoleucine, methionine, leucine, histidine, phenylalanine in flesh.

Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata (Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this study, the removal characteristic of ammonia nitrogen and behavior of nitrogen was investigated using Leclercia adecarboxylata, which was derived from the culture contaminated by ammonia nitrogen of high concentration. The method of ammonia nitrogen removal was not biological nitrification and denitrification but elimination of nutrient salt with internal synthesis of microorganisms which use ammonia nitrogen as substrate. L. adecarboxylata(one of ammonia synthesis microorganisms) was highly activated and showed the most high removal efficiency in free salt condition but the removal efficiency decreased badly in salt concentration of more than 4%. About 80 mg/L of $NH_3-N$ was mostly removed within 20 hours and 500 mg/L of $NH_3-N$ showed less then removal efficiency of 50% because carbon source was not enough. However, ammonium nitrogen concentration was decreased again when the carbon source was inserted additionally thus, ammonium nitrogen removal efficiency by L. adecarboxylata, was related to amount of carbon source. pH decreased from 8.0 to 6.36 according to growth of L. adecarboxylata. Concentration of nitrite nitrogen and nitrate nitrogen did not increase and TKN concentration showed no variation while ammonia nitrogen was removed by L. adecarboxylata. In addition to, when content of protein in organic nitrogen was measured, protein was not detected at the beginning of microorganism synthesis but protein of 193.1 mg/L was detected after 48 hours. Hence, ammonium nitrogen was not decomposed as nitrate nitrogen and nitrite nitrogen but synthesized by L. adecarboxylata, which has excellent ability of nitrogen synthesis and can threat ammonia nitrogen of high concentration in wastewater.

The Effect of Acidification on Membrane Distillation Process for Strong Nitrogenous Wastewater (산화 전처리가 고강도 질소폐수의 막증류 공정에 미치는 영향)

  • Tun, Lat Lat;Jeong, Dawoon;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.137-147
    • /
    • 2020
  • A direct contact membrane distillation (DCMD) was applied to treat strong nitrogenous wastewater of anaerobic digestion supernatant (ADS) and human urine (HU). The ammonia transfer was evaluated in terms of specific ammonia transfer (SAT) value, which is the ratio of total ammoniacal nitrogen divided by the amount of water transferred. The acidification resulted in low SAT values and high quality of produced water. The ammonia transfer control in the acidic condition was stronger for HU than ADS due to higher alkalinity (pH 8.8) and ammonia concentration (5700 mg-N/L) of HU. Acidified HU at pH 4 exhibited a SAT value of 1.64 × 10-5, which was significantly smaller than the SAT value of 3.00 × 10-3 for the original HU. The low pH enhanced the water flux for ADS, but HU showed a steep decrease in water flux due to enhanced fouling. It was considered that the fouling intensity in acidic conditions depends on the characteristics of the wastewater source. The major foulants on the MD membrane were NaCl, CaCO3 and CuSO4 as recognized by the SEM-EDS. Acidified ADS and HU at pH 4 showed relatively high N content of 8.18 % and 28.03 %, respectively, as organic fouling.

Studies on the Semicarbazone Formation of Monosubstituted Benzaldehydes (모노장쇄(長鎖)알킬카르복시 베타인류(類)의 미셀 형성(形成)에 관(關)한 연구(硏究))

  • Nam, Ki-Dae;Jeong, No-Hee;No, Sueng-Ho;Kim, Yu-Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-24
    • /
    • 1990
  • 2-N,N,N-trimethyl ammonia decanoate, 2-N,N,N-trimethyl ammonio dodecanoate, 2-N,N,N-trimethyl ammonia tetradecanoate and 2-N,N,N-hexadecanoate with in straight long chain alkyl carboxybetaines, and N-decyl N,N-dimethyl ammonio ethanoate, N-dodecyl N,N-dimethyl ammonia ethanoate, N-tetradecyl N,N-dimethyl ammonia ethanoate and N-hexadecyl N,N-dimethyl ammonia ethanoate with in nitrogen-straight long chain alkyl carboxy betaines measured respectively surface tensions by the stalagmometer method at various temperature, also their critical micelle concentration were evaluated. In micellization, the contribution of standard free energy change(${\Delta}G^{\circ}m$), standard enthalpy change(${\Delta}H^{\circ}m$) and standard entropy change (${\Delta}S^{\circ}m$), have been calculated, with increasing temperature. ${\Delta}H^{\circ}m$ changes from negative, and a similar change in the sign of ${\Delta}H^{\circ}m$ is observed with increasing chain length at $25^{\circ}C$, while the entropy of micellization, ${\Delta}S^{\circ}m$ is positive over the temperature range studied, it becomes less so at higher temperatures. Estimates of the enthalpy and entropy contribution attributable to the ion head group and alkyl chain have been made. The enthalpy and entropy change, per methylene group increase respectively with increasing chain length the result are discussed in terms of current theories of micellization.

Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal (주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향)

  • Park, Hongkeun;Rhu, Daehwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.