• Title/Summary/Keyword: Free Volume Theory

Search Result 188, Processing Time 0.023 seconds

Experimental Study of High-Altitude Simulation using Small-Scale Supersonic Diffuser (소형 초음속 디퓨저를 이용한 고고도환경 모사에 대한 시험적 연구)

  • Lee Ji-Hyung;Oh Jong-Yun;Byun Jong-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.138-145
    • /
    • 2004
  • Experimental study was conducted on cylindrical supersonic diffuser in order to investigate the effects of the ratios of diffuser area to nozzle throat area (Ad/At), diffuser area to nozzle exit area (Ad/Ae), nozzle exit area to its throat area (Ae/At), and diffuser length to its diameter (L/D), the free volume of vacuum chamber, and the relative distance between nozzle exit and diffuser inlet on the diffuser performance. The study showed that the minimum diffuser starting pressure (Po/Pa)st increased monotonically with increase in (Ad/At) as predicted by the normal shock and momentum theory models and the volume of vacuum chamber affected vacuum pressure level during diffuser operation at lower value of (Ad/Ae). The results of this investigation will be utilized in the design of real-scale high-altitude simulation test facility.

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle

  • Gafour, Youcef;Hamidi, Ahmed;Benahmed, Abdelillah;Zidour, Mohamed;Bensattalah, Tayeb
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.37-47
    • /
    • 2020
  • This work focuses on the behavior of non-local shear deformation beam theory for the vibration of functionally graded (FG) nanobeams with porosities that may occur inside the functionally graded materials (FG) during their fabrication, using the non-local differential constitutive relations of Eringen. For this purpose, the developed theory accounts for the higher-order variation of transverse shear strain through the depth of the nanobeam. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam with porosities. The validity of this theory is verified by comparing some of the present results with other higher-order theories reported in the literature, the influence of material parameters, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM beam are represented by numerical examples.

Static and Free Vibration Analysis of FGM Plates on Pasternak Elastic Foundation (Pasternak 탄성지반위에 놓인 점진기능재료 판의 정적 및 자유진동 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.529-538
    • /
    • 2016
  • The simplified plate theory is presented for static and free vibration analysis of power-law(P) and sigmoid(S) Functionally Graded Materials(FGM) plates. This theory considers the parabolic distribution of the transverse shear stress, and satisfies the condition that requires the transverse shear stress to be zero on the upper and lower surfaces of the plate, without the shear correction factor. The simplified plate theory uses only four unknown variables and shares strong similarities with classical plate theory(CPT) in many aspects such as stress-resultant expressions, equation of motion and boundary conditions. The material properties of the plate are assumed to vary according to the power-law and sigmoid distributions of the volume fractions of the constituents. The Hamilton's principle is used to derive the equations of motion and Winkler-Pasternak elastic foundation model is employed. The results of static and dynamic responses for a simply supported FGM plate are calculated and a comparative analysis is carried out. The results of the comparative analysis with the solutions of references show relevant and accurate results for static and free vibration problems of FGM plates. Analytical solutions for the static and free vibration problems are presented so as to reveal the effects of the power law index, elastic foundation parameter, and side-to-thickness ratio.

Dynamic Mechanical Properties of the Symmetric Laminated high Strength Carbon Fiber Epoxy Composite Thin Beams (대칭 적층한 얇은 고강도 탄소섬유 에폭시 복합재 보의 기계적 동특성)

  • 정광섭;이대길;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2123-2138
    • /
    • 1994
  • A study on the dynamic mechanical properties of the high strength carbon fiber epoxy composite beam was carried out. The macromechanical model was used for the theoretical analysis of the symmetric laminated composite beam. The anisotropic plate theory and Bernoulli-Euler beam theory were used to predict the effective flexural elastic modulus and the specific damping capacity of laminated composite beam. The free flexural vibration and torsional vibration tests were carried out to determine the specific damping capacities of the unidirectional laminated composite beam. The vibration tests were performed in a vacuum chamber with laser vibrometer system and electromagnetic hammer to obtain accurate experimental data. From the computational and experimental results, it was found that the theoretical values with the macromechanical analysis and the experimental data of symmetric laminated composite beam were in good agreement.

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects

  • Kunbar, Laith A. Hassan;Hamad, Luay Badr;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.619-630
    • /
    • 2020
  • This paper studies nonlinear free vibration characteristics of nonlocal magneto-electro-elastic (MEE) nanobeams resting on nonlinear elastic substrate having geometrical imperfection by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All of previously reported studies on MEE nanobeams ignore the influences of geometric imperfections which are very substantial due to the reason that a nanobeam cannot be always perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtained nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric constituent in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam are dependent on the magnitude of exerted electric voltage, magnetic potential, hardening elastic foundation and geometrical imperfection.

Electrostatic Gibbs Free Energy and Solvation Number of Tetraalkylammonium Ions in Pyridine at 25${^{\circ}C}$ Obtained Using Conductance of Corresponding Ion

  • 김학성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1347-1350
    • /
    • 1998
  • The equivalent conductances for tetraethylammonium perchlorate (TEAP), tetrabutylammonium perchlorate (TBAP), tetrahexylammonium perchlorate (THAP), and tetradodecylammonium perchlorate (TDDAP) were measured in pyridine (Py) at 25 ℃. The measured data have been analyzed by Onsager conductance theory. From Kohirausch's law of independent migration of ion, the limiting ionic conductances of tetraalkylammonium ions were determined using the limiting ionic conductance of perchlorate cited from reference. Using those and viscosity of pyridine, the Stokes and hydrodynamic radii of tetraethylammonium, tetrabutylammonium, tetrahexylammonium, and tetradodechylammonium ions were calculated. And, the salvation numbers of corresponding ions were also calculated using the hydrodynamic and crystallographic radii and the volume of one pyridine molecule. From those results, the model of salvation for those ions was extracted by comparison with the model for ion salvation. And the electrostatic Gibbs free energy (ΔGel) fitted for our salvation model was calculated. Those of corresponding ions in pyridine at 25 ℃ also increased with increasing radii of tetraalkylammonium ions. This trend of ΔGel was explained by the different ion-solvent interaction between tetraalkylammonium ion and pyridine.