• Title/Summary/Keyword: Free Spray

Search Result 158, Processing Time 0.024 seconds

Development of Atomization Spraying System for Solvent-free Paints(II) - Structural Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(II) - 유압 엑츄에이터의 구조해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Solvent-free paint is sprayed from higher-pressure conditions, because the viscosity is large. The hydraulic actuator which can be operated under higher-pressure condition is required to spray solvent-free paints in painting process for the environmental protection. The purpose of this paper is to develop the hydraulic actuator under higher-pressure conditions for solvent-free paint spraying system. The hydraulic actuator consists of inner spool, outer spool and ball. The analysis of a structural stability was conducted by using ANSYS V11 under the design condition of upward and downward movement of spool. As a result, the maximum von-Mises stress applied on spool under 4mm displacement showed a value of 106MPa which was greater than the allowable stress of the spool with a value of 250MPa and a value of safety factor 3. This result suggested that the spool system be unstable under the design condition so that it was necessary for the spool system to be reinforced to secure the structural stability.

EFFECT OF THE SHAPE OF IMPINGEMENT PLATE ON THE VAPORIZATION AND FORMATION OF FUEL MIXTURE IN IMPINGING SPRAY

  • Kang, J.J.;Kim, D.W.;Choi, G.M.;Kim, D.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.585-593
    • /
    • 2006
  • The effect of the shape of the side wall on vaporization and fuel mixture were investigated for the impinging spray of a direct injection(DI) gasoline engine under a variety of conditions using the LIEF technique. The characteristics of the impinging spray were investigated under various configurations of piston cavities. To simulate the effect of piston cavity configurations and injection timing in an actual DI gasoline engine, the parameters were horizontal distance from the spray axis to side wall and vertical distance from nozzle tip to impingement plate. Prior to investigating the side wall effect, experiments on free and impinging sprays for flat plates were conducted and these results were compared with those of the side wall impinging spray. For each condition, the impingement plate was located at three different vertical distances(Z=46.7, 58.4, and 70 mm) below the injector tip and the rectangular side wall was installed at three different radial distances(R=15, 20, and 25 mm) from the spray axis. Radial propagation velocity from spray axis along impinging plate became higher with increasing ambient temperature. When the ambient pressure was increased, propagation speed reduced. High ambient pressures tended to prevent the impinging spray from the propagating radially and kept the fuel concentration higher near the spray axis. Regardless of ambient pressure and temperature fully developed vortices were generated near the side wall with nearly identical distributions, however there were discrepancies in the early development process. A relationship between the impingement distance(Z) and the distance from the side wall to the spray axis(R) was demonstrated in this study when R=20 and 25 mm and Z=46.7 and 58.4 mm. Fuel recirculation was achieved by adequate side wall distance. Fuel mixture stratification, an adequate piston cavity with a shorter impingement distance from the injector tip to the piston head should be required in the central direct injection system.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

Quality of Ginger Powder as Affected by Concentration and Dehydration Methods of Ginger Extracts (농축 및 건조방법에 따른 생강 추출액 분말의 품질변화)

  • Jeong, Moon-Cheol;Jeong, Seong-Weon;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1589-1595
    • /
    • 1999
  • Reverse osmosis(RO) and rotary evaporation, freezer drying and spray drying as concentration and dehydration methods were, respectively, employed to investigate their effect on the flavor quality of ginger powder. Rotary evaporation and spray drying methods were more effective to restrict the browning of ginger powder than RO and freezer drying methods. Concentration methods had no effect on the free amino acids and free sugar contents of ginger powder, but freezer drying resulted in the less quality loss than spray drying. And the powder prepared from enzymatically hydrolyzed extract contained less crude protein, crude ash, browning and the changes in free amino acids, but had more the crude fat, solubility and free sugars than that from ginger extract obtained by filter press. Sensory results indicated that quality of ginger powder prepared by RO concentration and freeze drying of enzymatically hydrolyzed extract was as good as that without enzyme hydrolysis

  • PDF

Dynamic Analysis of Metal Transfer using VOF Method in GMAW (I) - Globular and Spray Transfer Modes (VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (I) - 입상 용적과 스프레이 이행 모드의 해석 -)

  • 최상균;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1997
  • Dynamics of molten drop detachment in the Gas Metal Arc (GMA) welding is investigated using the Volume of Fluid(VOF) method. The electromagnetic effects are included in the formulation of the VOF method which has been widely used to analyze the dynamics of the fluid having a free surface. The molten drop geometry, pressure and velocity profiles within the drop are calculated numerically in the cases of globular and spray transfer modes. It appears that the velocity and current distribution affect metal detachment. It is found that the taper is formed and maintained during the spray transfer by the electromagnetic force. Predicted results show reasonably good agreement with the available experimental data which validates the application of the VOF method to metal transfer analysis.

  • PDF

Numerical Analysis of Sprays in the Combustion Chamber of Diesel Engine (디젤 분무 거동에 관한 수치 해석적 연구)

  • Cha K. S.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • In this study, the spray models incorporated into the GTT code were tested for sprays injected in quiescent swirling gases and for the sprays impinging on a flat wall, and the validity of the models has been confirmed by comparing the calculated results with the experimental data. Using this code, the gas flow, spray behavior and fuel vapor distributions in the combustion chamber of a D.I engine have been numerically analyzed with respect to the constant injection pressure and the injection pressure varying with injection time.

  • PDF

A Proposal for Diesel Spray Model Using a TAB Breakup Model and Discrete Vortex Method

  • Yeom, Jeong-Kuk;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Jiro Senda;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.532-548
    • /
    • 2002
  • A hybrid model consisting of a modified TAB (Taylor Analogy Breakup) model and DVM (Discrete Vortex Method) is proposed for numerical analysis of the evaporating spray phenomena in diesel engines. The simulation process of the hybrid model is divided into three steps. First, the droplet breakup of injected fuel is analyzed by using the modified TAB model. Second, spray evaporation is calculated based on the theory of Siebers'liquid length. The liquid length analysis of injected fuel is used to integrate the modified TAB model and DVM. Lastly, both ambient gas flow and inner vortex flow of injected fuel are analyzed by using DVM. An experiment with an evaporative free spray at the early stage of its injection was conducted under in-cylinder like conditions to examine an accuracy of the present hybrid model. The calculated results of the gas jet flow by DVM agree well with the experimental results. The calculated and experimental results all confirm that the ambient gas flow dominates the downstream diesel spray flow.

Effects of Impact Velocity on Crystallization and Activation Energy of Cu-based Bulk Metallic Glasses in Kinetic Spray Coating (저온 분사 코팅 공정에서 충돌속도에 따른 CuNiTiZr 벌크 비정질 소재의 활성화 에너지와 결정화 거동 분석)

  • Yoon, Sang-Hoon;Bae, Gyu-Yeol;Kim, Jung-Hwan;Lee, Chang-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.301-307
    • /
    • 2008
  • In this paper, nanocrystallization of CuNiTiZr bulk metallic glass (BMG) subjecting to a kinetic spraying, dependent on impact velocity, was investigated by numerical and experimental approaches. The crystallization fraction and nucleation activation energy of initial feedstock and as-deposited coating were estimated by DSC and Kissinger method, respectively. The results of numerical modeling and experiment showed that the crystalline fraction and nucleation activation energy in BMG coatings were depended on kinetic energy of incident particle. Upon impact, the conversion of particle kinetic energy leads to not only decreasing free energy barrier but also increasing the driving force for an amorphous to crystalline phase transformation. The nanocrystallization of BMGs is associated with the strain energy delivered by a plastic deformation with a high strain rate.

Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature (HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도)

  • Yang, Young-Myung;Kim, Ho-Yeon
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF

Spray Drying of Zirconia/Alumina Composite Powder Using PVP as a Binder (PVP 결합제를 이용한 지르코니아/알루미나 복합분말의 분무건조)

  • Shim, Hyung-Bo;Moon, Joo-Ho;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.446-451
    • /
    • 2002
  • Zirconia/alumina mixture powder was spray-dried various degree of dispersion, type of dispersants and powder content in the slurry. The quality of the granule was determined by observation of the granule shapes after spray drying and fracture of intergranular boundaries during pressing. Defect-free granules were obtained from the powders that formed weak flocs in the slurry. The granules, spray-dried from the slurry containing 32.5 vol% powder mixture and PVP as binder, were fractured completely during shaping and the sintered specimens showed a density of 99.7% and a flexural strength of 850 MPa.