• Title/Summary/Keyword: Free Si

Search Result 891, Processing Time 0.032 seconds

New Self-Directed Growth Mechanism of Molecular Lines across the Dimer Rows on H-terminated Si(001) Surface

  • Choi, Jin-Ho;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.301-301
    • /
    • 2011
  • We present theoretical investigations of the self-assembled growth of one-dimensional (1D) molecular lines directed across the dimer rows on the H-terminated Si(001) surface [1]. Based on density-functional theory calculations, a new growth mechanism of the 1D acetylacetone line is proposed [2], which involves the radical chain reaction initiated at two dangling-bond sites on one side of two adjacent Si dimers. It is also enabled that, if an H-free Si dimer were employed as the initial reaction site, a 1D acetylacetone line can grow along the dimer row. Our findings represent the first insight into the growth of 1D molecular lines not only across but also along the dimer rows on the H-terminated Si(001) surface.

  • PDF

Reinvestigation on the silicide formation process (실리사이드 형성 과정에 대한 재 조명)

  • Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • Silicide formation process and the formation sequence were investigated in this study. It was postulated that the formation of the second silicide phase involves glass formation between the first silicide phase and Si given that a thin metal film is deposited on a Si substrate. The concentration of glass was assumed to be located where the free energy of the liquid alloy with respect to the first nucleated compound and solid Si (${\Delta}$G') is most negative. It was also mentioned that the glass concentration is close to the composition of the second phase in order to achieve the maximum energy degradation. It was shown that the minimum ${\Delta}$G' concentration can be estimated by interpolating the portion of the liquidus where the liquid alloy is in equilibrium with the two solid constituents, namely the first compound phase and Si, thereby forming a hypothetical eutectic.

  • PDF

Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles (SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과)

  • 최유송
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Crystal growth of AlN thin films on 3C-SiC buffer layer (3C-SiC 완충층을 이용한 AIN 박막의 결정성장)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.346-347
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Polycrystalline (poly) 3C-SiC buffer layers using pulsed reactive magnetron sputtering. Characteristics of AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. As a result, highly (002) oriented AlN thin films with almost free residual stress were achieved using 3C-SiC buffer layers. Therefore, AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

  • PDF

Study on the Specular Effect in NiO spin-valve Thin Films (NiO 스핀밸브 박막의 Specular Effect에 의한 자기저항비의 향상에 대한 연구)

  • Choi, Sang-Dae;Joo, Ho-Wan;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.231-234
    • /
    • 2002
  • Magnetic properties are investigated for top- and bottom-type spin valves of Si/SiO$_2$/NiO(60nm)/Co(2.5nm)/Cu(1.95nm)/Co(4.5nm)/NOL(t nm; Nano Oxide layer). The MR ratios of the bottom-type spin valves with NOL are larger than those of the top-type spin valves. However, the enhancement of the former is lower than the latter. Both of spin-valves also showed almost constant Ap and smaller p. Enhanced MR ratios of spin valves with NOL result mainly from small values of with constant Ap which due to specular diffusive electron scattering at NOL(NiO)/metal interfaces.

Cu Filling process of Through-Si-Via(TSV) with Single Additive (단일 첨가액을 이용한 Cu Through-Si-Via(TSV) 충진 공정 연구)

  • Jin, Sang-Hyeon;Lee, Jin-Hyeon;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.128-128
    • /
    • 2016
  • Cu 배선폭 미세화 기술은 반도체 디바이스의 성능 향상을 위한 핵심 기술이다. 현재 배선 기술은 lithography, deposition, planarization등 종합적인 공정 기술의 발전에 따라 10x nm scale까지 감소하였다. 하지만 지속적인 feature size 감소를 위하여 요구되는 높은 공정 기술 및 비용과 배선폭 미세화로 인한 재료의 물리적 한계로 인하여 배선폭 미세화를 통한 성능의 향상에는 한계가 있다. 배선폭 미세화를 통한 2차원적인 집적도 향상과는 별개로 chip들의 3차원 적층을 통하여 반도체 디바이스의 성능 향상이 가능하다. 칩들의 3차원 적층을 위해서는 별도의 3차원 배선 기술이 요구되는데, TSV(through-Si-via)방식은 Si기판을 관통하는 via를 통하여 chip간의 전기신호 교환이 최단거리에서 이루어지는 가장 진보된 형태의 3차원 배선 기술이다. Si 기판에 $50{\mu}m$이상 깊이의 via 및 seed layer를 형성 한 후 습식전해증착법을 이용하여 Cu 배선이 이루어지는데, via 내부 Cu ion 공급 한계로 인하여 일반적인 공정으로는 void와 같은 defect가 형성되어 배선 신뢰성에 문제를 발생시킨다. 이를 해결하기 위해 각종 유기 첨가제가 사용되는데, suppressor를 사용하여 Si 기판 상층부와 via 측면벽의 Cu 증착을 억제하고, accelerator를 사용하여 via 바닥면의 Cu 성장속도를 증가시켜 bottom-up TSV filling을 유도하는 방식이 일반적이다. 이론적으로, Bottom-up TSV filling은 sample 전체에서 Cu 성장을 억제하는 suppressor가 via bottom의 강한 potential로 인하여 국부적 탈착되고 via bottom에서만 Cu가 증착되어 되어 이루어지므로, accelerator가 없이도 void-free TSV filling이 가능하다. Accelerator가 Suppressor를 치환하여 오히려 bottom-up TSV filling을 방해한다는 보고도 있었다. 본 연구에서는 유기 첨가제의 치환으로 인한 TSV filling performance 저하를 방지하고, 유기 첨가제 조성을 단순화하여 용액 관리가 용이하도록 하기 위하여 suppressor만을 이용한 TSV filling 연구를 진행하였다. 먼저, suppressor의 흡착, 탈착 특성을 이해하기 위한 연구가 진행되었고, 이를 바탕으로 suppressor만을 이용한 bottom-up Cu TSV filling이 진행되었다. 최종적으로 $60{\mu}m$ 깊이의 TSV를 1000초 내에 void-free filling하였다.

  • PDF

The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application (전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향)

  • Chang, Gun-Ho;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2006
  • Copper via filling is the important factor in 3-D stacking interconnection of SiP (system in package). As the packaging density is getting higher, the size of via is getting smaller. When DC electroplating is applied, a defect-free hole cannot be obtained in a small size via hole. To prevent the defects in holes, pulse and pulse reverse current was applied in copper via filling. The holes, $20\and\;50{\mu}m$ in diameter and $100{\sim}190\;{\mu}m$ in height. The holes were prepared by DRIE method. Ta was sputtered for copper diffusion barrier followed by copper seed layer IMP sputtering. Via specimen were filled by DC, pulse and pulse-reverse current electroplating methods. The effects of additives and current types on copper deposits were investigated. Vertical and horizontal cross section of via were observed by SEM to find the defects in via. When pulse-reverse electroplating method was used, defect free via were successfully obtained.

  • PDF

Optimization of the Mixing Flow in an Agitated Tank

  • Yoo, Dal-Hyun;Yang, Si-Young;Choi, Youn-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.151-157
    • /
    • 2005
  • In the chemical, mineral and electronics industries, mechanically stirred tanks are widely used for complex liquid and particle mixing processes. In order to understand the complex phenomena that occur in such tanks, it is necessary to investigate flow field in the vessel. Most difficulty on the numerical analysis of stirred tank flow field focused particularly on free surface analysis. In order to decrease the dead zone and improve the flow efficiency of a system with free surface, this paper presents a new method that overcomes free surface effects by properly combining the benefits of using experiment and 3-D CFD. This method is applied to study the mixing flow in an agitated tank. From the results of experimental studies using the PIV (particle image velocimetry) system, the distribution of mixing flow including free surface are obtained. And these values that are expressed as a velocity vector field have been patched for simulating the free surface. The results of velocity distribution obtained by 3-D CFD are compared with those of experimental results. The experimental data and the simulation results are in good agreement.

  • PDF

Synthesis and Application of Nanoparticulate Aluminosilicate Sols (II) Mixed Al_2O_3-SiO_2$ Sols (극미세 입자 Aluminosilicate계 졸의 합성 및 응용 (II) Al_2O_3-SiO_2$계 혼합졸)

  • 현상훈;김승구;이성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • A crack-free ceramic composite membrane with micropores has been synthesized by the pressurized sol-gel coating technique using the mixed Al2O3-SiO2 sols. The mixed sols were prepared by mixing nanoparticulate SiO2 and boehmite sols. These sols were more stable at lower pH, but very unstable when their copositions were in the range of 50~75mol% of SiO2 at the same pH. The mixed Al2O3-SiO2 membrane prepared from the mixed sol (0.2mol/$\ell$ of solid content and pH=2) containing 40mol% of SiO2 had the mean pore radius of 0.80nm and the specific surface area of 280$m^2$/g. The nitrogen permeability through the coated Al2O3-SiO2 layer was 42$\times$107mol/$m^2$.s.Pa. It was found that the thermal stability of aluminosilicate membranes, even through similar to that of SiO2 membranes, was much improved in comparison with ${\gamma}$-alumina membranes.

  • PDF

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.