• 제목/요약/키워드: Free Flow Speed

검색결과 242건 처리시간 0.024초

Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method (보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구)

  • Choi S. W.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed in this study. A conservative Chimera grid method with a dynamic domain-dividing line technique is applied and validated by solving the flowfield around circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver is also examined by computations of a oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

Three-Dimensional Computations of Rocket Exhaust Plume (로켓 배기플룸에 관한 3차원 수치해석)

  • Kim Y.-M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.71-76
    • /
    • 1999
  • The base flow regions of a three-body sounding rocket containing multiple exhaust plumes were numerically investigated in three dimensions for a free stream Mach number of 2.7 at flight altitude 18.5 km. The flowfields were calculated using the full compressible Navier-Stokes equations with an one-equation turbulence model of Baldwin-Earth. The present calculations were executed based upon a chemically frozen, single perfect gas model assumption. Due to the symmetry of the three-body rocket of each single nozzle, only one fourth of the computational domain was considered for the analysis. The results indicate that a babe heating effect is not considerable due to the small expansion of the plumes. In the base, however, a low speed recirculating flow dominates the region.

  • PDF

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Two Visualization Techniques Using Smoke-wire and Micro Water-droplets and Their Applications to Vortex Flows (연기선과 미세 수적을 이용한 두 가지 가시화 기법과 와류에의 적용)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제44권12호
    • /
    • pp.1017-1026
    • /
    • 2016
  • The present paper describes the two off-surface visualization techniques and their application examples to vortex flows. One of the two visualization techniques is the classical smoke-wire technique, and the other is the visualization technique using the micro water-droplets generated by the home-style ultrasonic humidifier. The smoke-wire technique has the limit of air flow speed (about 5 m/sec for 0.07 mm-diameter wire) and the pollution problem, but it produces very fine and clear streak line sheet. It is applied to visualize the wing-tip vortices of a 3-dimensional wing. The micro water-droplet technique has the larger limit of air flow speed (above 10 m/sec) and is free from pollution and toxic problems compared to the smoke-wire technique. It is successfully applied to visualize the complex vortex system of a double-delta wing with an apex strake.

Experimental Study on the Aerodynamic Characteristics of a High-speed Ground Vehicle Moving in a Channel (채널 내를 운행하는 초고속 지상 운행체의 공력특성에 관한 실험적 연구)

  • Choi, Dong-Soo;Kim, Dong-Hwa;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권8호
    • /
    • pp.72-81
    • /
    • 2004
  • A Wind tunnel test for a high speed ground vehicle was conducted to investigate the aerodynamic interactions between the vehicle and a solid channel. The free stream velocity was 30m/see and Reynolds number per unit length was $3.1{\times}10^5/m$. Experimental devices such as a variable channel ground and guide way were used for the test. As the vehicle was close to the channel ground and guide way, lift was significantly increased, drag was slightly decreased and pitching moments were restricted to augment static stability. Using smoke-wire, flow visualization was made to confirm these results by comparing the channel and non-channel flow characteristics of the vehicle. Under the influence of the channel ground and guide way, the flow beneath the vehicle was not discharged outside wing end plates, which was the major reason of the increase in lift of the vehicle.

A Three-Dimensional CFD Study on the Air Flow Characteristics in a Wax Spin Coater for Silicon Wafer Manufacturing (실리콘 웨이퍼 생산공정용 왁스 스핀코팅장치 내 기류 특성에 대한 3차원 전산유동해석)

  • Kim, Yong-Ki;Kim, Dong-Joo;Umarov, Alisher;Kim, Kyoung-Jin;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제10권6호
    • /
    • pp.146-151
    • /
    • 2011
  • Wax spin coating is a part of several wafer handling processes in the silicon wafer polishing station. It is important to ensure the wax layer free of contamination to achieve the high degree of planarization on wafers after wafer polishing. Three-dimensional air flow characteristics in a wax spin coater are numerically investigated using computational fluid dynamics techniques. When the bottom of the wax spin coater is closed, there exists a significant recirculation zone over the rotating ceramic block. This recirculation zone can be the source of wax layer contamination at any rotational speed and should be avoided to maintain high wafer polishing quality. Thus, four air suction ducts are installed at the bottom of the wax spin coater in order to control the air flow pattern over the ceramic block. Present computational results show that the air suction from the bottom is quite an effective method to remove or minimize the recirculation zone over the ceramic block and the wax coating layer.

Simulation Experiments for Ubiquitous Traffic Flow Management (유비쿼터스 환경에서 최적교통관리를 위한 시뮬레이션 평가)

  • Park, Eun-Mi;Go, Myeong-Seok
    • Journal of Korean Society of Transportation
    • /
    • 제27권3호
    • /
    • pp.71-77
    • /
    • 2009
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communications. The VISSIM simulation experiments were performed to address the issues in developing the preventive congestion management algorithm proposed in the companion paper. Traffic flow stability measures were developed based on the platoon profile, which enables us to explicitly consider traffic flow stability in traffic flow management. Traffic flow management strategies according to the traffic flow states were proposed: Maintain the equilibrium speed for free flow state, maintain the traffic flow stability by platoon control for critical state, and surpress the shock wave propagation for congested state. And finally potential benefit of the proposed traffic flow management scheme was evaluated based on the simulation experiment results. It is considered that extensive field experiments should be performed to confirm the simulated results.

Mechanical Characteristics and Macro-and Micro-structures on Friction Stir Welded Joints with 5083O Al Alloys (Al 5083O합금의 마찰교반용접부의 조직과 특성평가)

  • Jang, Seok-Ki;Park, Jong-Seek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.104-111
    • /
    • 2009
  • This paper shows the behaviors of macro- and micro-structures and mechanical properties for specimen's welding region welded by FSW. according to welding conditions with 5mm thickness aluminum 5083O alloy plate. It apparently results in defect-free weld zone in case traverse speed was changed to 32 mm/min under conditions of anti-clockwise direction and tool rotation speed such as 800 and 1250 rpm with tool's pin diameter of 5 ${\Phi}mm$ and shoulder diameter of 20 ${\Phi}mm$, pin length of 4.5 mm and tilting angle of $2^{\circ}$. The ultimate stress of ${\sigma}_T=331$ MPa and the yield point of 147 MPa are obtained at the condition of the travel speed of 32 mm/min with the tool rotation speed of 1250 rpm. There is neither voids nor cracks on bended surface of $180^{\circ}$ after bending test. The improvement of toughness after impact test was found. The lower rotating and traverse speed became, the higher were yield point, maximum stress and elongation(%) with the stresses and the elongation(%) versus the traverse speed diagram. Vickers hardness for cross section of welding zone were also presented. The typical macro-structures such as dynamically recrystallized zone, thermo-mechanically affected zone and heat affected zone and the micro-structures of the transverse cross-section were also showed. However, the author found out that the region of 6mm far away from shoulder circumference was affected by friction heat comprehensively, that is, hardness softened and that part of micro-structures were re-solid-solution or recrystallized, the author also knew that there is no mechanically deformation on heat affected zone but there are the flow of plastic deformation of $45^{\circ}$ direction on thermo-mechanically affected zone and the segregation of Al-Mg on nugget. The solid solution wt(%) of parent material as compared against of friction stir welded zone was comprehensively changed.

Improvement of ALINEA Model Using Speed (속도를 이용한 ALINEA 모델 보완에 관한 연구)

  • Cho, Han-Seon;Lee, Jun;Lee, Ho-Won;Kim, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • 제26권5호
    • /
    • pp.73-80
    • /
    • 2008
  • ALINEA algorithm, which is one of the best on-ramp metering algorithms, was designed to control the traffic volume from on-ramp in order to maintain the optimal occupancy rate of the detectors installed downstream of the merge area. But, the reliability of occupancy rate estimated from the loop detectors, which are used most commonly in Korea, is relatively lower than other parameters such as speed and volume. Moreover, because occupancy rate depends on the length of loop detectors and site, lots of calibration work is required whenever they are installed in order to estimate the occupancy rate. Therefore, there exists room for improvement of ALINEA algorithm because only occupancy rate having some problems is considered as a control parameter in ALINEA algorithm. Practically it is difficult to measure or perceive the occupancy rate for traffic engineers and drivers. On the other hand, speed can be good alternative which can overcome the defect induced by using occupancy. In this study, occupancy based ALINEA algorithm is converted to speed based ALINEA assuming the linear relationship between density and speed.

Unsteady RANS Analysis of the Hydrodynamic Response for a Ship with Forward Speed in Regular Wave (규칙파중 전진하는 선박의 유체역학적 응답에 대한 비정상 수치해석)

  • Park, Il-Ryong;Kim, Kwang-Soo;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제45권1호
    • /
    • pp.29-41
    • /
    • 2008
  • The present paper provides a CFD analysis of diffraction problem for a ship with forward speed using an unsteady RANS simulation method, a WAVIS code. The WAVIS viscous solver adopting a finite volume method has second order accuracy in time and field discretizaions for the RANS equations. A two phase level-set method and a realizable ${\kappa}-{\varepsilon}$ turbulence model are adopted to compute the free surface and to meet the turbulence closure, respectively. To validate the capability of the present numerical methods for the simulation of an unsteady progressive regular wave, computations are performed for three grid sets with refinement ratio of ${\sqrt{2}}$. The main simulation is performed for a DTMB5512 model with a forward speed in a regular head sea condition. Validation of the present numerical method is carried out by comparing the present CFD results with available unsteady experimental data published in the 2005 Tokyo CFD Workshop: resistance, heave force, pitch moment, unsteady free surface elevations and velocity fields.