• Title/Summary/Keyword: Free Drop

Search Result 255, Processing Time 0.029 seconds

The Effects of Tube Arrangement and Inclination on the Pressure Drop in Tube Bundles of Intermediate Beat Exchanger in Liquid Meta Reactor (액체금속로 중간열교환기 관다발에서의 튜브배열과 경사각도가 압력강하에 미치는 영향)

  • Nam Ho Yun;Kim Jong Man;Choi Jong Hyeun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.659-662
    • /
    • 2002
  • The present paper presents the experimental results for pressure drop in inclined tube bundles located in a rectangular duct. Measurements are made for pressure drop in triangular and rotated triangular tube arrays having P/d ratio of 1.6 and inclination angles of 30,45,60 and 90 degrees. The Reynolds number based on the free stream velocity and tube diameter ranges from $8{\times}10^2\;to\;6.3{\times}10^{4}$. The experimental results show that the magnitude of dimensionless pressure drop decreases significantly when the inclined angle is less than 45 degree. The measured data are compared with two existing correlations available in the literatures. The ESDU correlation agrees well with the present data far the triangular arrays. But some discrepancies are observed for the rotated triangular arrays when the inclined angles are 30 and 45 degrees. The Idel'chik correlation generally agrees well with the measured data for the rotated triangular arrays except for the inclined angle of 30 degree. The Idel'chik correlation needs modification for the triangular arrays. The modified Idel'chik correlation agrees well with the measured data within $10{\%}$. It is found that the present measured data can be applied to the evaluation and modification of previous correlations.

  • PDF

Lead-free Solder Technology and Reliability for Automotive Electronics (자동차 전장용 무연 솔더 기술)

  • Lee, Soon-Jae;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, properties of Pb-free solders for automotive electronics parts were discussed. Lead-free solders for electronics became important after RoHS (Restriction of the use of certain Hazardous Substances) to avoid environmental pollution. Also the growing electronic rate in automotive parts and ELV (End-of Life Vehicles) make Pb-free solder for automotive electronics to be inevitable trend. Definitely, Pb-free solder for automotive electronics should have good wettability, basic strength, but need more reliability than other solders, since it has harsh condition like high temperature, humidity and engine vibration. Thus, shear strength test, thermal shock, drop test and many others are needed to ensure the high reliability. This study describes the properties and requirements of Pb-free solders for automotive electronics.

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

Changing Effect in Aerodynamic Characteristics of a Captive Body Separated from Aircraft (항공기 탑재체의 분리 후 공력 특성 변화 효과)

  • Cho, Hwan-Kee;Lee, Sang-Hyun;Kang, Chi-Hang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.397-404
    • /
    • 2011
  • The aerodynamic characteristics of a separated captive body in flow field around aircraft are studied to observe aerodynamic stability for safe separation from aircraft. Since the captive body separated from aircraft is initially exposed to unsteady flow pattern, the change of aerodynamic forces and moments should be measured to analyze how the flow pattern affects on the captive body at the vicinity of aircraft. Aerodynamic forces and moments of the separated captive body are measured at selected positions along predictable dropping trajectories. The measuring trajectories, generated by the free drop test of the dropping model in the wind tunnel, are consisted of 9 possible lines by free dropped trajectories. Experimental results show that the aerodynamic forces and moments are significantly varied with the distance between the captive body and aircraft. In conclusion, the change of aerodynamic characteristics within flow field around aircraft should be considered to simulate trajectories of the separated captive body from aircraft.

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

An Experimental Study on Aircraft Internal Store Separation Characteristics (항공기 내부무장 분리특성 분석을 위한 풍동시험연구)

  • An, Eunhye;Cho, Donghyun;Kim, Jongbum;Jang, Youngil;Jeong, KyeongJin;Kim, Sangjin;Lee, Hokeun;Reu, Taekyu;Chung, Hyoungseog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2017
  • This study investigates store separation characteristics of an unmanned aerial vehicle having generic stealth configuration over unsteady flow of an internal bay. Free-drop wind tunnel tests are conducted to simulate bomb releases from an internal weapons bay while high-speed camera images are taken. The images are analyzed to examine the effects of flow velocity, angle of attack, flap deflection and the ejector force application on the store separation trajectories. For the free-drop wind tunnel tests, Froude Scaling is applied to match the dynamic similarity for the bomb model, and the ejector force is simulated by using small pneumatic cylinders. The results indicate that the test bomb model safely separates from the internal bay at the given test conditions and configurations. It is also observed that the effects of the flow velocity and ejector force application have greater impacts on the separation trajectories than those of angle of attack and flap deflection.

Experimental and Numerical Study on Board Level Impact Test of SnPb and SnAgCu BGA Assembly Packaging (BGA Type 유.무연 솔더의 기계적 충격에 대한 보드레벨 신뢰성 평가)

  • Lim, Ji-Yeon;Jang, Dong-Young;Ahn, Hyo-Sok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.77-86
    • /
    • 2008
  • The reliability of leaded and lead-free solders of BGA type packages on a printed circuit board was investigated by employing the standard drop test and 4-point bending test. Tested solder joints were examined by optical microscopy to identify associated failure mode. Three-dimensional finite element analysis(FEM) with ANSYS Workbench v.11 was carried out to understand the mechanical behavior of solder joints under the influence of bending or drop impact. The results of numerical analysis are in good agreement with those obtained by experiments. Packages in the center of the PCB experienced higher stress than those in the perimeter of the PCB. The solder joints located in the outermost comer of the package suffered from higher stress than those located in center region. In both drop and bending impact tests, the lead-free solder showed better performances than the leaded solders. The numerical analysis results indicated that stress and strain behavior of solder joint were dependent on various effective parameters.

  • PDF

A Study on the Influence of Blending Ratio of Powder and Oil on the Stability of Talc-Free Pressed Powder Formulation (파우더와 오일의 배합 비율이 탈크 프리 프레스드 파우더 제형의 안정성에 미치는 영향에 관한 연구)

  • Oh, Ji Won;Kim, Hyun Jee;Kwak, Byeong Mun;Jo, Hantae;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The main stability factors of the pressed powder include hardness and drop stability. In general, for pressed powder with talc, the hardness and drop stability are evenly met and the skin texture is excellent. Recently, more than ever customers are looking for a replacement due to asbestos issue of talc. Therefore, it is urgent to develop a pressed powder formulation without talc that maintains stability and does not lose its sense of use. In this study, experiments were conducted to find the optimal ingredients mixing ratio to make talc-free pressed powder. The characteristics of raw materials used mainly in powder were checked and the ratio was changed, and the lightness and hardness were measured and drop test was conducted. If the natural mica ratio was higher than the synthetic mica or non-coated silica was used instead of the coated silica, the hardness and drop stability were lower than the content containing talc, but the lightness was similar. Conversely, if the synthetic mica ratio was equal to or higher than the natural mica ratio and the coated silica ratio was equal to or higher than the non-coated silica ratio, the hardness and drop stability of the content containing talc were similar, but the lightness was low. It was found that the hardness was higher than the content containing talc, but the drop stability was lower. Therefore, further study of the correlation between hardness and fall stability is also thought to be necessary.

Dynamic Analysis of Metal Transfer using VOF Method in GMAW (I) - Globular and Spray Transfer Modes (VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (I) - 입상 용적과 스프레이 이행 모드의 해석 -)

  • 최상균;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1997
  • Dynamics of molten drop detachment in the Gas Metal Arc (GMA) welding is investigated using the Volume of Fluid(VOF) method. The electromagnetic effects are included in the formulation of the VOF method which has been widely used to analyze the dynamics of the fluid having a free surface. The molten drop geometry, pressure and velocity profiles within the drop are calculated numerically in the cases of globular and spray transfer modes. It appears that the velocity and current distribution affect metal detachment. It is found that the taper is formed and maintained during the spray transfer by the electromagnetic force. Predicted results show reasonably good agreement with the available experimental data which validates the application of the VOF method to metal transfer analysis.

  • PDF

Dynamic Analysis of Metal Transfer in Pulsed-GMAW (Pulsed-GMAW의 금속 이행 현상에 관한 동적 해석)

  • 최상균;유중돈;박상규
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.84-91
    • /
    • 1997
  • The metal transfer phenomenon of the pulsed-GMAW is simulated by formulating the electromagnetic force incorporated with the Volume of Fluid algorithm. The free surface profiles, pressure and velocity distributions within the drop are computed numerically. Axial velocity and acceleration generated during peak current period are found to have a significant effect on drop detachment. Therefore, the accelerated inertia force becomes one of important factors affecting metal transfer in the pulsed-GMAW. When the pulse current parameters are selected properly, the molten drop is detached just after current pulse, and the operating range of the pulsing frequency increases with higher peak current and duty cycle. Calculated operating ranges show reasonably good agreements with the available experimental data.

  • PDF