• Title/Summary/Keyword: Fraunhofer diffraction

Search Result 24, Processing Time 0.028 seconds

Spectral Analysis of Arrayed Waveguide Grating (Arrayed Waveguide Grating의 스펙트럼해석)

  • Jung, Jae-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.121-127
    • /
    • 2004
  • We performed the spectrum analysis of arrayed waveguide grating using Fresnel Kirchhoff diffraction formula and its approximated Fraunhofer diffraction equation and applied both methods to 16 channel and 40 channel models. We presented the spectra and found out the limitations of Fraunhofer diffraction in analysis of arrayed waveguide grating and compared the errors coming from Fraunhofer diffraction approximation and due to imperfection during the fabrication process.

  • PDF

Fraunhofer Diffraction Pattern of a Periodic Hologram When the Input Beam Size is Similar to the Period of the Hologram (주기적인 홀로그램에 입사하는 레이저빔의 크기가 주기와 유사할 때의 프라운호퍼 회절 패턴에 대한 연구)

  • Go, Chun Soo;Lim, Sungwoo;Oh, Yong Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.193-197
    • /
    • 2018
  • The ratio of the period of a diffractive element to the input beam size is a critical parameter in a diffractive beam shaper. We measured and calculated the Fraunhofer diffraction patterns of a periodic hologram with an input beam size similar to the period of the hologram. The measured intensities show very complicated patterns and are strongly dependent upon the center position of the laser beam relative to the hologram. Using a diffraction formula for a periodic hologram, we calculated the diffracted light intensities and fit them to the measured ones. The measured and calculated intensities are in good agreement even when the beam diameter of the incident laser is similar to the period of the hologram. We can therefore use this formula to estimate the output of a periodic beam shaper even under such an extreme condition.

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

Measuring System of Surface Roughness for On-The-Machine using Diffraction Light (회절광을 이용한 기상계측용 표면거칠기의 측정시스템)

  • 김성훈;이기용;강명창;김정석;김남경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.803-807
    • /
    • 2000
  • This paper deals wi th the establishment of the method of non-contact surface roughness measurement by developed system. One of the most Important factor of determinating quality of a produced manufacture is surface roughness The tendency of manufacturing method is changing from small amount manufactures / high-volume production to large amount manufactures / low volume production, and the study of reducing time for surface roughness measurement has been actively investigated The non-contact surface roughness method by using laser which is different from contact method has been only used to the polished surface, so new surface roughness measurement method was adopted by virtue of Fraunhofer diffraction in the periodic surface for on-the-machine. in this paper, we establish the method of non-contact surface roughness measurement which can reduce measuring time in the periodic surface

  • PDF

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device

  • Ippen, Christian;Greco, Tonino;Wedel, Armin
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.

Fabrication of Microgratings and their IR Diffraction Spectra

  • Kim, In Cheol;Choi, Eunwoo;Kim, Seong Kyu;Kang, Young Il;Kim, Taeseong;Bae, Hyo-Wook;Park, Do-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.908-912
    • /
    • 2014
  • Microgratings whose diffracted field at a fixed angle generate IR spectra of $SF_6$ or $NH_3$ were fabricated by MEMS techniques for the purpose of IR correlation spectroscopy. Each micrograting was composed of 1441 reflecting lines in the area of $19.2{\times}19.2mm^2$. The depth profile of the line elements was determined with a gradient searching method that was described in our previous publication (J. Mod. Opt. 2013, 60, 324-330), and was discretized into 16 levels between 0 and $6.90{\mu}m$. The diffraction field from a given depth profile was calculated with Fraunhofer equation. The fabricated microgratings showed errors in the depth and the width within acceptable ranges. As the result, the diffracted IR spectrum of each micrograting matched well with its target reference spectrum within spectral resolution of our optical setup.

Optical Dark Field Imaging for Characterization of Semiconductors

  • Ogawa, Tomoya;Kissinger, Gudrun;Sakai, Kazufumi
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.219-222
    • /
    • 1997
  • The principle of dark field imaging is comprehensively discussed using real images of dislocations, stacking faults and gettering phenomena due to defects obtained by Cz Si wafers and LEC semi-insulating GaAs crystals. Resulution of dark field imaging is improved by Fourier transformation of Fraunhofer diffraction pattern obtained at an out-of focusing position of an objective lens.

  • PDF

Prediction of Mean Diameters Based on the Instability Theory for Twin Fluid Nozzle (불안정 이론을 이용한 2유체 노즐에서의 분무입경 예측)

  • Kim, Gwan-Tae;An, Guk-Yeong;Kim, Han-Seok
    • 연구논문집
    • /
    • s.25
    • /
    • pp.47-54
    • /
    • 1995
  • The atomizing characteristics in a spray injected from a twin fluid atomization nozzle have been investigated. The Sauter mean diameters as mean diameter are compared with wavelength calculated from the instability theory. The Sauter mean diameter are measured by the Fraunhofer diffraction theory using the Malvern particle sizer. The wavelength is calculated using the mean relative velocity instead of the exit relative velocity of nozzle. Also shadowgraphy technique is used to visualize atomization. This paper gives a possibility that the mean diameter can be predicted with the wavelength obtained by the simple instability theory.

  • PDF

Spatial Frequency Filtering Characteristics of Annular Phase Gratings (고리형 위상 격자의 공간 주파수 필터 효과)

  • 김인길;고춘수;임성우;오용호;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.994-1000
    • /
    • 2004
  • We studied the characteristics of annular phase gratings as spatial frequency filters. We first calculated the Fraunhofer diffraction patterns of annular gratings and then got the modulation transfer function (MTF) from the zeroth order Hankel transform of the intensity distribution function. Binaryphase annular grating shows higher diffraction efficiency than binary phase rectangular grating. But the MTF decreases linearly in the low-frequency region as that of rectangular grating does. The diffraction pattern of 4-phase annular grating is similar to that of 2-phase grating and hence MTFs of the two are much alike. For 8-phase annular grating, the 7th order diffracted beam is the lowest one next to the first. Consequently, the diffraction efficiency is very high and the MTF graph is curved upward. The diffracted beams except the first order are negligible and hence the MTF characteristics are more improved in the case of 16-phase grating. But the degree of improvement becomes lowered c(Impaled with 8-phase grating. We made a 16-phase annular grating and measured its MTF. The experimental result agrees well with the calculated one.