Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.908

Fabrication of Microgratings and their IR Diffraction Spectra  

Kim, In Cheol (National Institute for Nanomaterials Technology)
Choi, Eunwoo (Department of Chemistry, Sungkyunkwan University)
Kim, Seong Kyu (Department of Chemistry, Sungkyunkwan University)
Kang, Young Il (The 5th R&D Institute - 2, Agency for Defense Development)
Kim, Taeseong (MOORI Technologies Co.)
Bae, Hyo-Wook (MOORI Technologies Co.)
Park, Do-Hyun (MOORI Technologies Co.)
Publication Information
Abstract
Microgratings whose diffracted field at a fixed angle generate IR spectra of $SF_6$ or $NH_3$ were fabricated by MEMS techniques for the purpose of IR correlation spectroscopy. Each micrograting was composed of 1441 reflecting lines in the area of $19.2{\times}19.2mm^2$. The depth profile of the line elements was determined with a gradient searching method that was described in our previous publication (J. Mod. Opt. 2013, 60, 324-330), and was discretized into 16 levels between 0 and $6.90{\mu}m$. The diffraction field from a given depth profile was calculated with Fraunhofer equation. The fabricated microgratings showed errors in the depth and the width within acceptable ranges. As the result, the diffracted IR spectrum of each micrograting matched well with its target reference spectrum within spectral resolution of our optical setup.
Keywords
Micrograting; Gradient search; MEMS; IR spectrum; Fraunhofer diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goody, R. J. Opt. Soc. Am. 1968, 58, 900.   DOI
2 Sinclair, M. B.; Butler, M. A.; Ricco, A. J.; Senturia, S. D. Appl. Opt. 1997, 36, 3342.   DOI
3 Sinclair, M. B.; Butler, M. A.; Kravitz, S. H.; Zubrzycki, W. J.; Ricco, A. J. Opt. Lett. 1997, 22, 1036.   DOI
4 Goodman, J. W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, 1996; Ch. 4.
5 Wolfe, M. A. Numerical Methods for Unconstrained Optimization: an introduction; Van Nostrand Reinhold Co.: New York, 1978; Ch. 6.
6 Kim, T.; Kim, S. K.; Kim, I. C.; Bae, H.-W.; Park, D.-H. J. Mod. Opt. 2013, 60, 324.   DOI
7 Sagberg, H.; Lacolle, M.; Johansen, I.-R.; Lovhaugen, O.; Belikov, R.; Solgaard, O.; Sudbo, A. S. IEEE J. Selected Topics in Quant. Elect. 2004, 10, 604.   DOI
8 Hollas, J. M. High Resolution Spectroscopy; Butterworh & Co.: London, 1982; Ch. 5.
9 Wood, D. L.; Bell, E. E.; Nielsen, H. H. Proc. Natl. Aca. Sci. USA 1950, 36, 497.   DOI
10 Meinhart, C. D.; Wereley, S. T. Meas. Sci. Tech. 2003, 14, 1047.   DOI
11 Liu, X.; Lu, Z.; Wang, X.; Jiang, Z.; Li, Y. Optoelectronics and Microelectronics Technology (AISOMT), 2011 Academic International Symposium on IEEE, 2011; p 116.
12 Zhou, G.; Tay, F. E. H.; Chau, F. S. Opt. Express 2003, 11, 1392.   DOI
13 Hecht, E.; Zajac, A. Optics; Addison-Wesley Publ. Co.: 1979; Ch. 10.