• 제목/요약/키워드: Frame within a frame

검색결과 722건 처리시간 0.029초

가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계 (Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method)

  • 남진숙;신행우;최규재
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

PSC 뼈대의 3차원 비선형 해석을 위한 화이버 모델 요소 (Fibered Element for the Three-Dimensional Nonlinear Analysis of Prestressed Concrete Frames)

  • 이재석;최규천
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.195-201
    • /
    • 2003
  • A fibered element for the material and geometric nonlinear analysis of three-dimensional reinforced and prestressed concrete frame is presented. The fibered frame element is idealized as an assemblage of concrete and reinforcing steel fibers in order to account for varied material properties within the cross section of the frame element through elastic, cracking and ultimated stages of materials. Prestressing tendon is modeled as an assemblage of multilinear prestressing steel segments each of which spans a frame element. The contribution of each prestressing steel is added directly to the fibered frame element. Numerical results from the ultimate analysis of three-dimensional PSC box girder are compared with those obtained from other investigator. The validity and the capability of the present nonlinear analysis model is well demonstrated.

  • PDF

Parametric 3D elastic solutions of beams involved in frame structures

  • Bordeu, Felipe;Ghnatios, Chady;Boulze, Daniel;Carles, Beatrice;Sireude, Damien;Leygue, Adrien;Chinesta, Francisco
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.233-248
    • /
    • 2015
  • Frame structures have been traditionally represented as an assembling of components, these last described within the beam theory framework. In the case of frames involving complex components in which classical beam theory could fail, 3D descriptions seem the only valid route for performing accurate enough analyses. In this work we propose a framework for frame structure analyses that proceeds by assembling the condensed parametric rigidity matrices associated with the elementary beams composing the beams involved in the frame structure. This approach allows a macroscopic analysis in which only the condensed degrees of freedom at the elementary beams interfaces are considered, while fine 3D parametric descriptions are retained for local analyses.

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

IEEE 802.15.4에서 확인 프레임을 위한 경량 인증 메커니즘 (A Lightweight Authentication Mechanism for Acknowledgment Frame in IEEE 802.15.4)

  • 허준;홍충선
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권3호
    • /
    • pp.175-185
    • /
    • 2007
  • IEEE 802.15.4 표준에서 데이타 또는 명령프레임의 성공적인 수신과 검증은 확인(Acknowledgment) 프레임을 통해 수행되어 진다. 하지만, 현재의 표준에서는 확인 프레임을 위한 어떠한 보안 기능도 제공하고 있지 않으며, 악의적인 노드는 언제든지 확인 프레임을 이용한 공격이 가능하다. 본 논문에서는 IEEE 802.15.4 네트워크 환경에서 확인 프레임을 위한 링크 레이어 (link-layer) 상의 개체 인증 메커니즘을 제안한다. 제안된 메커니즘은 인증을 위해 3바트의 값을 사용하므로 디바이스의 오버헤드를 크게 감소시킬 수 있다. 개체 인증에 사용되는 암호화된 비트 스트림은 연결설정 (association) 과정을 통해 코디네이터로부터 디바이스에게 전달되어진다. 확률적인 이론과 시abf레이션 결과를 통해 제안된 메커니즘이 MAC 레이어의 공격을 효과적으로 탐지할 수 있음을 증명한다.

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.121-136
    • /
    • 2024
  • In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.

A New Method for Segmenting Speech Signal by Frame Averaging Algorithm

  • Byambajav D.;Kang Chul-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권4E호
    • /
    • pp.128-131
    • /
    • 2005
  • A new algorithm for speech signal segmentation is proposed. This algorithm is based on finding successive similar frames belonging to a segment and represents it by an average spectrum. The speech signal is a slowly time varying signal in the sense that, when examined over a sufficiently short period of time (between 10 and 100 ms), its characteristics are fairly stationary. Generally this approach is based on finding these fairly stationary periods. Advantages of the. algorithm are accurate border decision of segments and simple computation. The automatic segmentations using frame averaging show as much as $82.20\%$ coincided with manually verified segmentation of CMU ARCTIC corpus within time range 16 ms. More than $90\%$ segment boundaries are coincided within a range of 32 ms. Also it can be combined with many types of automatic segmentations (HMM based, acoustic cues or feature based etc.).

Nonlinear shear-flexure-interaction RC frame element on Winkler-Pasternak foundation

  • Suchart Limkatanyu;Worathep Sae-Long;Nattapong Damrongwiriyanupap;Piti Sukontasukkul;Thanongsak Imjai;Thanakorn Chompoorat;Chayanon Hansapinyo
    • Geomechanics and Engineering
    • /
    • 제32권1호
    • /
    • pp.69-84
    • /
    • 2023
  • This paper proposes a novel frame element on Winkler-Pasternak foundation for analysis of a non-ductile reinforced concrete (RC) member resting on foundation. These structural members represent flexural-shear critical members, which are commonly found in existing buildings designed and constructed with the old seismic design standards (inadequately detailed transverse reinforcement). As a result, these structures always experience shear failure or flexure-shear failure under seismic loading. To predict the characteristics of these non-ductile structures, efficient numerical models are required. Therefore, the novel frame element on Winkler-Pasternak foundation with inclusion of the shear-flexure interaction effect is developed in this study. The proposed model is derived within the framework of a displacement-based formulation and fiber section model under Timoshenko beam theory. Uniaxial nonlinear material constitutive models are employed to represent the characteristics of non-ductile RC frame and the underlying foundation. The shear-flexure interaction effect is expressed within the shear constitutive model based on the UCSD shear-strength model as demonstrated in this paper. From several features of the presented model, the proposed model is simple but able to capture several salient characteristics of the non-ductile RC frame resting on foundation, such as failure behavior, soil-structure interaction, and shear-flexure interaction. This confirms through two numerical simulations.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.