• Title/Summary/Keyword: Frame Stress

Search Result 652, Processing Time 0.023 seconds

Cloning and Characterization of PMET3a from Populus alba${\times}$Populus glandulosa

  • Lee Jun-Won;In Jun-Gyo;Lee Bum-Soo;Choi Yong-Eui;Kim Jin-Ju;Yang Deok-Chun
    • Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • A type 3 metallothionein cDNA (PMT3a) from ozone-treated Populus alba${\times}$Populus glandulosa cDNA library has been isolated and characterized. A PMT3a cDNA is 459 nucleotides long and has an open reading frame of 201 bp with a deduced amino acid sequence of 66 residues (pI 4.94). The deduced amino acid sequence of PMT3a matched to the previously reported metallothionein genes. The deduced amino acid sequence of PMT3a showed the $86\%$ identity with P. balsamifera ${\times}$P. deltoides. Expression of PMT3a by the RT-PCR was increased 60 min than 30 min after drought treatment. The ozone treated poplar increased at 30 min in the early time and then decreased at 60 min.

  • PDF

Effect of fence porosity on the velocity field of wake flow past porous wind fences (다공성 방풍벽의 다공도가 펜스후류 속도장에 미치는 영향에 관한 연구)

  • Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.915-926
    • /
    • 1998
  • Velocity fields of near turbulent was behind a porous wind fence were measured using the 2-frame PTV method in a circulating water channel. The fences used in this study had different geometric porosity(.epsilon.) of 0, 20, 40 and 65%. The fence was embedded in a thin laminar boundary layer, i.e., .delta./H ~ = 0.1. Reynolds number based on the fence height H and free stream velocity(U$\_$o/) was about 8,400. As a result, a recirculating flow region was formed behind the fence for the .epsilon.=0% and 20% wind fence. For the wind fences having porosity larger than .epsilon.=40%, it was difficult to see separation bubbles behind the fence. The .epsilon.=20% porous fence reveals the maximum velocity reduction, however, the turbulent intensity and Reynolds shear stress are much greater than those of .epsilon.=40% fence. Among the wind fence tested in this study, the porous wind fence of .epsilon.=40% porosity is the most effective for abating wind erosion.

A Study of Structure-Fluid Interaction Technique for Submarine LOX Tank under Impact Load of Underwater Explosion (수중폭발 충격하중을 받는 잠수함 액화산소 탱크의 구조-유체 상호작용 기법에 관한 연구)

  • KIM JAE-HYUN;PARK MYUNG-KYU
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.20-25
    • /
    • 2005
  • The authors performed the underwater explosion analysis for the liquified oxygen tank - a kind of fuel tank of a mid-size submarine, and tried to verify the structural safety for this structure. First, the authors reviewed the theory and application of underwater explosion analysis, using a Structure-Fluid Interaction technique and its finite element modeling scheme. Next, the authors modeled the explosive and sea water as fluid elements, the LOX tank as structural elements, and the interface between the two regions as the ALE scheme. The effect on shock pressure and impulse of fluid mesh size and shape are also investigated. Upon analysis, it was found that the shock pressure due to explosion propagated into the water region, and hit the structure region. The plastic deformation and the equivalent stress were apparent at the web frame and the shock mount of LOX structure, but these values were acceptable for the design criteria.

A Study on Contact Deformation of Automotive Door Weatherstrip Using Non-linear Finite Element Method (비선형 유한요소법을 이용한 자동차 도어 웨더스트립의 접촉변형에 관한 연구)

  • Kim Byung Soo;Moon Byung-Young;Kim Kwang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • In vehicle door system, weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The higher efficient a weatherstrip is, the more durable it is in contact between the door and body frame. In this study, nonlinear finite element(FE) analysis is performed to obtain cauchy-stresses, displacements and reaction forces of the weatherstrip. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. The MARC which is a commercial software for the nonlinear analysis of a flexible FE model is used. Twenty-one cases of the FE model are developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased. When the weatherstrip is designed, it would be considered that the displacement value of the weatherstrip has to be less than 7.2mm.

High Efficiency Design of Ie4 Class Synrm Subsituting for Induction Motor (슈퍼프리미엄(IE4)급 유도전동기 대체용 동기 릴럭턴스 전동기 고효율 설계연구)

  • Ryu, Gwang-Hyeon;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.35-40
    • /
    • 2015
  • In accordance with global energy conservation policies such as MEPS (Minimum Energy Performance Standard), electric motor industry is moving to super-high-efficiency machines and research to develop IE4 (International Energy Efficiency Class 4) motors has been launched. In this situation, SynRM (Synchronous Reluctance Motor) has been attracting attention in place of induction motor which hardly provides super premium efficiency. As a result, much research on SynRM is being performed at home and abroad. Also, some products have already been appearing in the market. Compared to induction motor, SynRM has better efficiency per unit area and wider operating range. Although the utilization of control system in synchronous motor results in higher prices, we still need to concentrate on developments of SynRM so as to comply with the new policies. This study demonstrated the electromagnetic design methods of super premium SynRM while maintaining the frame of existing IE3 induction motor. We documented the design procedures for generating high saliency which is the most essential and mechanical stress anlaysis is also treated. In conclusion, we proved the validity of our design by manufacturing and testing our 3 models.

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

Fatigue behavior of Cr-Mo-V steel at high temperature for turbines -Propagation characteristics of high cycle fatigue crack- (터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동-고사이클 피로균열의 전파특성-)

  • Song, Sam-Hong;Kang, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.69-76
    • /
    • 1997
  • The rotating bending fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely sued in thermal power plant turbines, at various temperatures such as room temperature, 300 .deg. C, 425 .deg. C and 550 .deg. C. The characteristics of fatigue crack propagation were examined and analyzed by using fracture mechanics parameter. The plastic replica method was also applied in order to measure the crack length on the basis of serial observation of fatigue crack propagation behavior on the defected specimen surface. The fatigue crack propagation behavior of Cr-Mo-V steel was investigated within the frame work of elastic-plastic fracture mechanics. The propagation law of fatigue crack is obtained uniquely by using the term .sigma. $^{n}$ sub a/where .sigma. $_{a}$ is the service stress, a is the crack length and n is a constant. The values of constant n are nearly equal to 2.48, 2.60 and 8.61 at room temperature, 300 .deg. C and 425 .deg. C.

  • PDF

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli;Ahmad Maleki;Ramin K. Badri
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Isolation and Identification of a New Gene Related to Salt Tolerance in Chinese Cabbage (배추에서 신규 염 저항성 관련 유전자 분리 및 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.748-755
    • /
    • 2013
  • This study was conducted to find a salt tolerance gene in Brassica rapa. In order to meet this objective, we analyzed data from a KBGP-24K oligo chip [BrEMD (Brassica rapa EST and microarray database)] of the B. rapa ssp. pekinensis 'Chiifu' under salt stress (250 mM NaCl). From the B. rapa KBGP-24K microarray chip analysis, 202 salt-responsive unigenes were primarily selected under salt stress. Of these, a gene with unknown function but known full-length sequence was chosen to closely investigate the gene function. The selected gene was named BrSSR (B. rapa salt stress resistance). BrSSR contains a 285 bp open reading frame encoding a putative 94-amino acid protein, and a DUF581 domain. The pSL94 vector was designed to over-express BrSSR, and was used to transform tobacco plants for salt tolerance analysis. T1 transgenic tobacco plants that over-expressed BrSSR were selected by PCR and DNA blot analyses. Quantitative real-time RT PCR revealed that the expression of BrSSR in transgenic tobacco plants increased by approximately 3.8-fold. Similar results were obtained by RNA blot analysis. Phenotypic characteristics analysis showed that transgenic tobacco plants with over-expressed BrSSR were more salt-tolerant than the wild type control under 250 mM NaCl for 5 days. Based on these results, we hypothesized that the over-expression of BrSSR may be closely related to the enhancement of salt tolerance.