• Title/Summary/Keyword: Frame Effect

Search Result 1,416, Processing Time 0.029 seconds

Estimation of Design Variables for Improving the Bonding Force of Lid & Frame for Cellular Phone (휴대폰용 리드 및 프레임의 접합력 향상을 위한 설계 변수 평가)

  • Nam, K.J.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.245-250
    • /
    • 2009
  • A lid & frame used as the shield of electromagnetic waves in cellular phones are composed of frame, which is welded at their electric circuits, and lid, of which debonding and joining are available from the frame. Typical lid & frame were mechanically bonded by contact between the embossing of lid and the piercing of frame. Bonding force of this part has to allow us to detach the lid from frame for exchange or fix of the electric part and have to be high enough to protect the electric part from external impacts. This study is designed to estimate the effect of design variables of lid & frame on its debonding force. Estimations were performed by finite element method.

Effect of Formalin Fumigation on Rotatory Cocooning Frame during Mounting Period (상족중 회전섶 포르말린훈증 소독효과)

  • Seol, Gwang-Yeol;Yang, Seong-Yeol;Lee, Sang-Pung
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.97-99
    • /
    • 1991
  • Disinfection of the rotatory cocooning frame is difficult under a multiple rearing system as the work is successively done. Accordingly, to investigate the effect of formalin fumigation on the rotatory cocooning frame during mounting period the mulberry leaves smeared with the water extract of dust collected form cocoonin frame after treatement were fed on the just molted 3rd instar larvae, 82% of them died with disease during 6 days, and negative effect of formalin fumigation takes place in terms of the cocoon reelability, showing 41% of it.

  • PDF

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.

Development of Revegetation Technique for Water Attacking Point Using Waterlogged Prevention Frame Revetment (침수방틀을 이용한 자연형 하천의 수충부 녹화공법 개발)

  • Moon, Seok Ki;Lee, Eun Yeob;Han, Sung Sik;Lee, Ki Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.98-109
    • /
    • 2001
  • This study aimed to investigate the effect of revegetation technique for water attacking point using waterlogged prevention frame revetment. In this study, we evaluate frame revetment stability, water quality, plant growth and ecological and envirnomental changes in Mooshim streamside landscape. The results are as follows; 1) The waterlogged prevention frame revetment appeared to be stable despite of two big floods. The materials used for the revetment were not eroded on the water attacking point. Thus, we confirmed the effect of scour prevention of the frame work. 2) The effects of the frame revetment on the water quality appeared to be good for the surrounding environment. Dissolved Oxygen(DO) was higher about $0.4{\sim}0.6mg/{\ell}$ at the frame revetment than that of the main stream flow. pH value was lower about 0.4~0.5. Electric Conductivity(EC) showed lower about $0.8{\sim}1.1{\mu}s/cm$. at submersion prevent frame than the low-flow of the stream. Turbidity was lower about $0.6{\sim}1.2mg/{\ell}$. 3) As the effects on ecological and environmental conditions, we discovered a number of carassius auratus and Zacco platypus in the frame revetment area. Also, sympetrum balteata, coenagrionidae was observed frequently. 4) The plant growth did not appear to tumble or wither despite of two big floods. The visual rating of plant growth was evaluated as medium (around 5 point) 5) The landscape analysis derived four factors(i.e. the harmony, the variation, the flexibility and the provincial characteristics) from the factor analysis.

  • PDF

Performance Evaluation of Steel Frame and Steel Damper Reinforced in RC frame (RC 골조에 보강된 강재프레임과 강재댐퍼의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.77-84
    • /
    • 2023
  • In this study, the performance evaluation of the RC frame specimen (RV2) which was strengthened by a steel frame and a steel damper with the lateral deformation prevention details proceeded. The comparison objects are bare frame specimen (BF), RV2 and AWD, where AWD is a specimen reinforced with steel damper and aramid fiber sheets. In the evaluation of envelope curve, stiffness degradation, and energy dissipation capacity, RV2 was evaluated to have excellent capacity as a whole. To evaluate the strengthening effect of the steel frame based on the maximum strength and energy dissipation capacity, it was evaluated to have a 38% of the RV2's capacity.

The influence of VAT framing on the attitude toward price frame : Focused on the moderating effect of thinking style (부가가치세 프레이밍이 가격제시방법에 대한 태도에 미치는 영향 : 사고방식의 조절효과를 중심으로)

  • Yoon, Jong-Ho;Jung, Yoon-Soo;Kim, Gwi-Gon
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.181-188
    • /
    • 2014
  • This study has examined the influence of VAT frame(VAT included vs. VAT excluded) on the consumer's attitude. Additionally, it has also examined the moderating effect of thinking style(holistic vs. analytic). The experiment stimuli were operated in 4 types[(product: utilitarian/hedonic)x(VAT: included vs. excluded)]. The results of this study can be summarized as follows. 1) The consumers preferred the VAT included frame to the VAT excluded frame. 2) The moderating effect of thinking style appeared. There is no meaningful difference between the VAT included frame and the VAT excluded one to analytic thinkers. But the holistic thinkers preferred the latter to the former. It is expected that this will be helpful to the person in charge of marketing for the company to establish an effective marketing strategy by considering these results.

Structural Effect on Curtailment of Upper Shear Wall in Frame-Shear Wall Structure (골조-전단벽 구조에서 상부 전단벽 미배치의 구조효과)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.18-25
    • /
    • 2016
  • This research purposed to study a structural effect on curtailment of upper shear wall in frame-shear wall structures, using MIDAS-Gen. In this study, the analysis variables were the story number of curtailment of upper shear wall, change of column section in every 2 stories and change of shear wall thickness in every 2 stories. In order to analyse a structural effect on curtailment of upper shear wall in frame-shear wall structures, we studied the distribution of shear force and overturning moment according to curtailment of shear wall, the inflection point of shear wall from shear force/overturning moment and the lateral stiffness. The results of study proposed the quantitative influence that the curtailment of upper shear wall in frame-shear wall structures had on the structural performance such as lateral stiffness. Furthermore, it is verified that the results of study can be very helpful in catching the materials on the structure design for a reasonable frame-shear wall system.

Deformation and Residual Stress Analysis of Automotive Frame Following as Welding Sequency Variation (용접 순서의 변화에 따른 자동차용 Frame의 변형과 잔류 응력 분석)

  • Park, Tae Won;Kim, Kee Joo;Won, Si-Tae;Han, Chang-Pyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.50-57
    • /
    • 2013
  • The high temperature thermal attacks in welding can affect the residual stress of a frame for automotive assembly accompanying frame deformation. Also the residual stress can induce the negative effect on durability performance of the automobile. In order to analyze the frame deformation, the simplified test frame which had the similar shape (form) of the real automotive frame was fabricated. The contactless optical 3D scanner was used for the shape difference measurement of the frame between before and after the welding. The FE-model of the test frame was composed and the deformation and residual stress simulation were performed. The simulated results were compared with the measured results for the reference of the frame design following as the variation of welding sequency. The deformation shape of the frame by simulation was in good agreement with that by the experimental measurement. In addition, the optimized welding sequency with reduced deformation after welding could be achieved through these analyses.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.