• 제목/요약/키워드: Fragmentation behavior

검색결과 56건 처리시간 0.027초

Synthesis and Fragmentation Behavior Study of n-alkyl/benzyl Isatin Derivatives Present in Small/Complex Molecules: Precursor for the Preparation of Biological Active Heterocycles

  • Kadi, Adnan A.;Al-Shakliah, Nasser S.;Motiur Rahman, A. F. M.
    • Mass Spectrometry Letters
    • /
    • 제6권3호
    • /
    • pp.65-70
    • /
    • 2015
  • N-Alkyl/benzyl substituted isatin derivatives are intermediates and synthetic precursors for the preparation of biological active heterocycles. N-alkyl/benzyl isatins have showed various biological activities, such as cytotoxicity, antiviral, caspase inhibition, cannabinoid receptor 2 agonists for the treatment of neuropathic pain, etc. In this study, N-alkyl/benzyl isatin derivatives were synthesized from isatin and alkyl/benzyl halides in presence of K2CO3 in DMF and excellent to quantitative yields (~95%) were obtained. Isatins and benzyl-isatins were condensed with fluorescein hydrazide to form fluorescein hydrazone. All the compounds were subjected to their fragmentation behavior study using LC/MSn. N-Alkyl substituted isatin derivatives fragmented at nitrogen-carbon (N-C) bond, hence gave daughter ion as [RN+H]+. Whereas, N-benzyl substituted isatin derivatives fragmented at carbon-carbon (C-C) bond of alkyl chain which linked with nitrogen molecules, therefore gave N-methyl fragments [RNCH2]+. This study demonstrated that, isatin moiety present in a small/large molecule or in a matrix of reaction mixture with/without N-alkyl/benzyl substituents can be identified by mass spectroscopic fragmentation behavior study.

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF

Examination of the Fragmentation Behavior of Hemin and Bilin Tetrapyrroles by Electrospray Ionization and Collision-induced Dissociation

  • Sekera, Emily R.;Wood, Troy D.
    • Mass Spectrometry Letters
    • /
    • 제9권4호
    • /
    • pp.91-94
    • /
    • 2018
  • Bilin tetrapyrroles are metabolic products of the breakdown of porphyrins within a species. In the case of mammals, these bilins are formed by the catabolism of heme and can be utilized as either biomarkers in disease or as an indicator of human waste contamination. Although a small subset of bilin tandem mass spectrometry reports exist, limited data is available in online databases for their fragmentation. The use of fragmentation data is important for metabolomics analyses to determine the identity of compounds detected within a sample. Therefore, in this study, the fragmentation of bilins generated by positive ion mode electrospray ionization is examined by collision-induced dissociation (CID) as a function of collision energy on an FT-ICR MS. The use of the FT-ICR MS allows for high mass accuracy measurements, and thus the formulas of resultant product ions can be ascertained. Based on our observations, fragmentation behavior for hemin, biliverdin and its dimethyl ester, phycocyanobilin, bilirubin, bilirubin conjugate, mesobilirubin, urobilin, and stercobilin are discussed in the context of the molecular structure and collision energy. This report provides insight into the identification of structures within this class of molecules for untargeted analyses.

Fragmentation Behavior Studies of Chalcones Employing Direct Analysis in Real Time (DART)

  • Motiur Rahman, A.F.M.;Attwa, Mohamed W.;Ahmad, Pervez;Baseeruddin, Mohammad;Kadi, Adnan A.
    • Mass Spectrometry Letters
    • /
    • 제4권2호
    • /
    • pp.30-33
    • /
    • 2013
  • Chalcones are naturally occurring, biologically active molecules generating interest from a wide range of research applications including synthetic methodology development, biological activity investigation and studying fragmentation patterns. In this article, a series of chalcones has been synthesized and their fragmentation behavior was studied using modern ambient ionization technique Direct Analysis in Real Time (DART). DART ion source connected with an ion trap mass spectrometer was used for the fragmentation of various substituted chalcones. The chalcones were introduced to the DART source using a glass capillary without sample preparation step. All the chalcones showed prominent molecular ion peaks $[M]^{{\cdot}+}$ corresponding to the structures. Multistage mass spectral data $MS^n$ ($MS^2$ and $MS^3$) were collected for all the chalcones studied. The chalcones with substitutions at 3, 4 or 5 positions gave product ion peaks with the loss of a phenyl radical ($Ph^{\cdot}$) by radical initiated ${\alpha}$-cleavage, while substitution at 2 position of chalcone in the A-ring gave a product ion peak with the loss of substituted styryl radical (PhCH = $CH^{\cdot}$). In case of the chalcones with the substituent at 4 positions in A and B rings gave both types of fragmentation patterns. In conclusion, chalcones can be easily characterized using modern DART interface in very short time and efficiently without any cumbersome sample pretreatment.

Collisional Activation Dissociation Mass Spectrometry Studies of Oligosaccharides Conjugated with Na+-Encapsulated Dibenzo-18-Crown-6 Ether

  • Bae, Jungeun;Song, Hwangbo;Moon, Bongjin;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.96-101
    • /
    • 2016
  • To determine the influence of the cationization agent on the collision activated dissociation (CAD) fragmentation behavior of oligosaccharides, the CAD spectra of the singly protonated, sodiated oligosaccharides and singly sodiated and dibenzo-18-crown-6 ether conjugated oligosaccharides were carefully compared. Each of these three different species showed quite different fragmentation spectra. The comparison of singly protonated and sodiated oligosaccharide CAD spectra revealed that different cationization agents affected the cationization agent adduction sites as well as the fragmentation sites within the oligosaccharides. When the mobility of $Na^+$ was limited by the dibenzo-18-crown-6 ether encapsulation agent, the examined linear oligosaccharides showed fragmentation patterns quite different from the unmodified ones. For the dibenzo-18-crown-6 ether conjugated oligosaccharides, the charge-remote fragmentation pathways were more likely to be activated than the chargedirected pathways. This work demonstrates that dibenzo-18-crown-6 ether conjugation can potentially provide a route to selectively activate the charge-remote fragmentation pathways, albeit to a limited extent, in tandem mass spectrometry studies.

Characterization of the Fragmentation Pattern of Peptide from Tandem Mass Spectra

  • Ramachandran, Sangeetha;Thomas, Tessamma
    • Mass Spectrometry Letters
    • /
    • 제10권2호
    • /
    • pp.50-55
    • /
    • 2019
  • The fragmentation statistics of ion trap CID (Collision-Induced Dissociation) spectra using 87,661 tandem mass spectra of doubly charged tryptic peptides are analyzed here. In contrast to the usual method of using intensity information, the frequency of occurrence of fragment ions, with respect to the position of the cleavage site and the residues at these sites is studied in this paper. The analysis shows that the frequency of occurrence of fragment ion peaks is more towards the middle of the peptide than its ends. It was noted that amino acid with an aromatic and basic side chain at N- & C- terminal end of the peptide stimulates more peaks at the lower end of the spectrum. The residue pair effect was shown when the amide bond occurs between acidic and basic residues. The fragmentation at these sites (D/E-H/R/K) stimulates the generation of the y-ion peak. Also, the cleavage site H-H/R/K stimulates the generation of b-ions. K-P environment in the peptide sequence has more tendency to generate y-ions than b-ions. Statistical analysis helps in the visualization of the CID fragmentation pattern. Cleavage pattern along the length of the peptide and the residue pair effects, enhance the knowledge of fragmentation behavior, which is useful for the better interpretation of tandem mass spectra.

Dynamic Routing and Spectrum Allocation with Traffic Differentiation to Reduce Fragmentation in Multifiber Elastic Optical Networks

  • ZOUNEME, Boris Stephane;ADEPO, Joel;DIEDIE, Herve Gokou;OUMTANAGA, Souleymane
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.1-10
    • /
    • 2021
  • In recent decades, the heterogeneous and dynamic behavior of Internet traffic has placed new demands on the adaptive resource allocation of the optical network infrastructure. However, the advent of multifiber elastic optical networks has led to a higher degree of spectrum fragmentation than conventional flexible grid networks due to the dynamic and random establishment and removal of optical connections. In this paper, we propose heuristic routing and dynamic slot allocation algorithms to minimize spectrum fragmentation and reduce the probability of blocking future connection requests by considering the power consumption in elastic multifiber elastic optical networks.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

인공신경망을 이용한 터널 주변 폭파 시 파쇄영역의 빠른 예측에 관한 연구 (A study on the fast prediction of the fragmentation zone using artificial neural network when a blasting occurs around a tunnel)

  • 유광호;전석원
    • 한국터널지하공간학회 논문집
    • /
    • 제15권2호
    • /
    • pp.81-95
    • /
    • 2013
  • 터널 인근에서 폭발이 일어나 붕괴가 발생될 경우 터널의 기능을 회복시키기 위해서는 파쇄영역에 대하여 빠르게 파악하여야 한다. 본 연구에서는 폭발에 따른 거동을 파악하고 파쇄영역을 빠르게 예측할 수 있는 방법을 서술하였다. 이를 위해 SolidWorks를 이용하여 다양한 3차원 요소망을 작성하고, AUTODYN을 이용하여 폭발해석을 수행하였다. 민감도 분석을 실시하여 해석결과를 이용해 폭발위치 등과 같은 폭발변수가 파쇄부피에 미치는 영향을 살펴보았다. 또한 인공신경망 학습자료로 구축하고, 최적의 학습모델을 선정하고, 파쇄부피와 반지름의 예측결과를 검증하였다. 연구결과, 본 연구에서 서술된 방법이 파쇄영역을 빠르고 효과적으로 예측할 수 있음을 확인하였다.