Browse > Article
http://dx.doi.org/10.5478/MSL.2016.7.4.96

Collisional Activation Dissociation Mass Spectrometry Studies of Oligosaccharides Conjugated with Na+-Encapsulated Dibenzo-18-Crown-6 Ether  

Bae, Jungeun (Department of Chemistry, Sogang University)
Song, Hwangbo (Department of Chemistry, Sogang University)
Moon, Bongjin (Department of Chemistry, Sogang University)
Oh, Han Bin (Department of Chemistry, Sogang University)
Publication Information
Mass Spectrometry Letters / v.7, no.4, 2016 , pp. 96-101 More about this Journal
Abstract
To determine the influence of the cationization agent on the collision activated dissociation (CAD) fragmentation behavior of oligosaccharides, the CAD spectra of the singly protonated, sodiated oligosaccharides and singly sodiated and dibenzo-18-crown-6 ether conjugated oligosaccharides were carefully compared. Each of these three different species showed quite different fragmentation spectra. The comparison of singly protonated and sodiated oligosaccharide CAD spectra revealed that different cationization agents affected the cationization agent adduction sites as well as the fragmentation sites within the oligosaccharides. When the mobility of $Na^+$ was limited by the dibenzo-18-crown-6 ether encapsulation agent, the examined linear oligosaccharides showed fragmentation patterns quite different from the unmodified ones. For the dibenzo-18-crown-6 ether conjugated oligosaccharides, the charge-remote fragmentation pathways were more likely to be activated than the chargedirected pathways. This work demonstrates that dibenzo-18-crown-6 ether conjugation can potentially provide a route to selectively activate the charge-remote fragmentation pathways, albeit to a limited extent, in tandem mass spectrometry studies.
Keywords
collisional activation dissociation; mass spectrometry; crown ether; oligosaccharides; sodium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, H.; Sharon, N. Eur. J. Biochem. 1993, 218, 1.   DOI
2 Brockhausen, I.; Schutzbach,J.; Kuhns, W. Acta Anat. 1998, 161, 36.   DOI
3 Zaia, J. Mass Spectrom. Rev. 2004, 23, 161.   DOI
4 Park, Y.; Lebrilla, C. B. Mass Spectrom. Rev. 2005, 24, 232.   DOI
5 Zaia, J. OMICS 2010, 14, 401.   DOI
6 Wuhrer, M. Glycoconj. J. 2013, 30, 11.   DOI
7 Zhou, W.; Hakansson, K. Curr. Proteomics 2011, 8, 297.   DOI
8 Kailemia, M. J.; Ruhaak, L. R.; Lebrilla, C. B.; Amster, I. J. Anal. Chem. 2014, 86, 196.   DOI
9 Morelle, W.; Faid, V.; Michalski, J.-C. Rapid Commun. Mass Spectrom. 2004, 18, 2451.   DOI
10 Oh, H. B.; Leach, F.; Arungundram, S.; Kanar, A.-M.; Venot, A.; Boons, G.-J.; Amster, J. I. J. Am. Soc. Mass Spectrom. 2011, 22, 582.   DOI
11 Lemoine J.; Strecker, G.; Leroy, Y.; Foumet, B.; Ricart, G. Carbohydrate Res. 1991, 221, 209.   DOI
12 Harvey, D. J. Proteomics 2005, 5, 1774.   DOI
13 Hofmeister, G. E.; Zhou, Z.; Leary, J. A. J. Am. Chem. Soc. 1991, 113, 5964.   DOI
14 Ngoka, L. C.; Gal, J. F.; Lebrilla, C. B. Anal. Chem. 1994, 66, 692.   DOI
15 Cancilla, M. T.; Penn, S. G.; Carroll, J. A.; Lebrilla, C. B. J. Am. Chem. Soc. 1996, 118, 6736.   DOI
16 Orlando, R.; Bush, C. A.; Fenselau, C. Biomed. Mass Spectrom. 1990, 19, 747.   DOI
17 Zhou, Z.; Ogden, S.; Leary, J. A. J. Org. Chem. 1990, 55, 5444.   DOI
18 Lemoine, J.; Fournet, B.; Despeyroux, D.; Jennings, K. R.; Rosenberg, R.; de Hoffmann, E. D. J. Am. Soc. Mass Spectrom. 1993, 4, 197.   DOI
19 Cancilla, M. T.; Wong, A. W.; Voss, L. R.; Lebrilla, C. B. Anal. Chem. 1999, 71, 3206.   DOI
20 Blair, S. M.; Kempen, E. C.; Brodbelt, J. S. J. Am. Soc. Mass Spectrom. 1998, 9, 1049.   DOI
21 Domon, B.; Costello, C. E. Glycoconj. J. 1988, 5, 397.   DOI
22 ViseuX, N.; de Hoffmann, E.; Domon, B. Anal. Chem. 1997, 69, 3193.   DOI
23 Yu, X.; Huang, Y.; Lin, C.; Costello, C. E. Anal. Chem. 2012, 84, 7487.   DOI
24 Gao, J.; Thomas, D. A.; Sohn, C. H.; Beauchamp, J. L. J. Am. Chem. Soc. 2013, 135, 10684.   DOI
25 Harvey, D. J. J. Am. Soc. Mass Spectrom. 2005, 16, 622.   DOI