• Title/Summary/Keyword: Fragility Analysis

Search Result 418, Processing Time 0.023 seconds

Retrofit Prioritization of Highway Network considering Seismic Risk of System (지진 위험도를 고려한 도로 교통망의 내진보강 우선순위 결정)

  • Na, Ung-Jin;Park, Tae-Won;Shinozuka, Masanobu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.47-53
    • /
    • 2008
  • This research focuses on the issue of seismic retrofit prioritization based on the Caltrans' highway network serving Los Angeles and Orange counties. Retrofit prioritization is one of most important problems in earthquake engineering, and it is a problem that most decision makers face in the process of resource allocation. This study demonstrates the methods of prioritized resource allocation in the process of retrofitting a regional highway network. For the criteria of a retrofit ranking, seismic vulnerability and the importance of network link are first introduced. Subsequently, link-based seismic retrofit cases are simulated, investigating the effects of the seismic retrofit in terms of seismic performance, such as driver's delay. In this study, probabilistic scenario earthquakes are used to perform a probabilistic seismic risk analysis. The results show that the retrofit prioritization can be differently defined and ranked depending on the stakeholders. This study provides general guidelines for prioritization strategy for the effective retrofitting of a highway network system.

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).

Association of the TREML2 and HTR1E Genetic Polymorphisms with Osteoporosis

  • Jung, Dongju;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2015
  • Osteoporosis is one of the diseases caused by accumulation of effects from complex interactions between genetic and environmental factors. Aging is the major cause for osteoporosis, which normally increases skeletal fragility and bone fracture especially among the elder. "Omics" refers to a specialized research field dealing with high-throughput biological data, such as genomics, transcriptomics, proteomics or metabolomics. Integration of data from multi-omics has been approved to be a powerful strategy to colligate biological phenomenon with multiple aspects. Actually, integrative analyses of "omics" datasets were used to present pathogenesis of specific diseases or casual biomarkers including susceptible genes. In this study, we evaluated the proposed relationship of novel susceptible genes (TREML2, HTR1E, and GLO1) with osteoporosis, which genes were obtained using multi-omics integration analyses. To this end, SNPs of the susceptible genes in the Korean female cohort were analyzed. As a result, one SNP of HTR1E and five SNPs of TREML2 were identified to associate with osteoporosis. The highest significant SNP was $rs6938076^*$ of TREML2 (OR=0.63, CI: 0.45~0.89, recessive P=0.009). Consequently, the susceptible genes identified through the multi-omics analyses were confirmed to have association with osteoporosis. Therefore, multi-omics analysis might be a powerful tool to find new genes associated with a disease. We further identified that TREML2 has more associated with osteoporosis in females than did HTR1E.

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.

A Study on Occupations and Life Chance(The Case of Chonbuk Province) (직업과 생활기회에 관한 연구 (전북지역을 중심으로))

  • 김영기;박재규
    • Korea journal of population studies
    • /
    • v.20 no.1
    • /
    • pp.129-159
    • /
    • 1997
  • The main purpose of this study is to describe the different life chances among various occupational groups in Chonbuk Province which has been excluded in the process of Korea's industrialization since the 1960s. More specifically, this study analyzed to what extent 6 occupational groups have the different life chances in the sub-levels such as health conditions and leisure life. According to our data analysis, it is found that the 6 occupational groups have the different life chances. That is, while those who are engaged in the higher prestigious occupation have a good life chance, those who in the lower prestigious occupation have a worse life chance. For example, among 6 occupational groups, professional-managerial who secure the higher autonomy and stability in their work have the highest life chance in the labor and health, and leisure life. Next, professional-technical, white-collar, sales-service occupants have the higher life chance after the professional-managerial. However, these 3 occupation groups are partially inconsistent in the two sectors of the life chance. Specifically, the professional-technical, despite their autonomy and stability in the work world, conceived that their work conditions are worse as well as badly influencing on their own health. On the other band, the sales-service workers group, despite their lower social status, is relatively autonomous and stable in their work environment and thus has the higher life chances. Finally, agricultural and productive workers have relatively the lower lift chances. Nevertheless, there are some clear differences among these 2 occupational groups. That is, the farmers have relatively the higher life chances in the sectors of socio-economic characteristics, and labor and health rather than productive workers. As a result, the productive workers are generally located in the lowest level of life chance. This fact is particularly attributed to the fragility of manufacturing industries in Chonbuk Province.

  • PDF

Analysis of Bone Mineral Density according to Hemoglobin in University Students (혈색소 농도에 따른 대학생의 골밀도 분석)

  • Yoon, Joon;Kim, Dai-Joong;Sung, Hyun-Ho;Jo, Yoon-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • This study was performed to evaluate the effect of hemoglobin (Hb) on bone mineral density (BMD) in university students by performing a quantitative analysis. The subjects included healthy university students aged 20 to 30 years. Although osteoporosis has traditionally been considered as a disease of aging women, it is becoming an increasingly concerning male health problem. Diagnosis of osteoporosis is calculated with a quantitative assessment of BMD. Laboratory blood and urine tests are mainly used with low BMD or fragility fractures to identify any possible causes of bone metabolism disorders. In this study, there was no difference in BMD according to gender. The average red blood cell (RBC), Hb, and Hematocrit (HCT) were significantly higher in males (p<0.01). The correlation between lumbar spine, skeletal muscle mass (SMM), and basal metabolic rate (BMR) was statistically significant (p<0.01). Hb showed a 51.7% statistical influence on BMD by multiple regression analysis. These findings are useful to understand the relationship between BMD and Hb; lower Hb level is associated with lower BMD. The Hb level was the strongest predictor of abnormal BMD. In conclusion, this study showed that a low Hb value was significantly correlated with low bone mass, suggesting that a low Hb value is a risk factor for changes in bone turnover that leads to a decrease bone density.

Development of Connection Model based on FE Analysis to Ensure Stability of Steel Storage Racks (적재설비 안정성 확보를 위한 FE 해석 기반의 연결부 모델 개발)

  • Heo, Gwanghee;Kim, Chunggil;Yu, Darly;Jeon, Jongsu;Lee, Chinok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • This paper attempts to develop a connection model based on FE analysis that can be applied to the evaluation of earthquake fragility of Steel Storage Racks lacking research in Korea. In order to accomplish this goal, shaking table tests, modal tests, and various member tests (8 case, push-over test) for structural members have been conducted to understand the behavior of steel storage racks. Based on the experimental results, detailed modeling of the joints was conducted using the NX-Nastran program in order to develop a connection model for Steel storage racks to be applied to the seismic vulnerability assessment. Especially, surface to surface contact element and spring element are applied to simulate the connection between the column member and the beam member connected by the simple latch method. Spring element model developed and applied ARX (Auto Regressive eXogenous) based mathematical model. The simulation results based on the FE model showed excellent reliability with a mutual error rate of less than 8% when compared with the member test results. As a result, it was confirmed that the FE model based connection model developed in the study can be applied to the analytical model for the seismic vulnerability assessment of Steel storage racks.

Electrophoretic analysis of the major proteins of ruminant erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate (반추동물 적혈구막 단백의 전기영동법에 의한 분석 -낮은 적혈구침강속도와의 관계-)

  • Lee, Bang-whan;Bahk, Young-woo
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.445-455
    • /
    • 1989
  • The proteins of the ruminant erythrocyte membranes were analysed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow erythrocyte sedimentation rate(ESR) of the ruminants were investigated by treating the erythrocytes with proteinases such as trypsin, chymotrypsin and pronase, and glycosidases such as neuraminidase and galactosidase. Protein content in the erythrocyte membrane was $2.85{\pm}0.28$ in human, $3.60{\pm}0.41$ in Korean cattle, $3.71{\pm}0.36$ in Holstein, $4.13{\pm}0.83$ in Korean native goat and $3.94{\pm}0.56mg/ml$ in sheep, showing higher in ruminant animals than in human(p<0.01). Although the general protein profiles of the ruminant erythrocyte membranes were almost similar to that of human, all the ruminant erythrocyte membranes showed one additional protein band, called band-Q in the previous report on proteins of bovine erythrocyte membrane, which migrated electrophoretically to the mid position between band-2 and band-3 in human erythrocyte membranes. The glycoprotein profiles of ruminant erythrocyte membranes revealed by periodic acid Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycogrotein) present in human erythrocyte membranes were almost absent from the ruminant animals. Instead, a strong PAS-positive band near the origin of the electrophorograms, which was named as PAS-B in the previous report on proteins of bovine erythrocyte membranes, was shown in the ruminant animals except sheep. In addition, the erythrocyte membranes of Korean native goat and sheep showed a moderate PAS-negative band near the tracking dye of the electrophorograms, which was named as PAS-G in this study. In the erythrocyte treated with the enzymes, the migration of each protein fracture of erythrocyte membranes in response to each enzyme was diverse according to different species or breed of ruminant animals. Among others, band-Q present in ruminants was slightly or moderately decreased by trypsin-, chymotrypsin-, and pronase- treatments of the erythrocytes, but not only in sheep. It was particularly noticeable that PAS-B, a fraction of glycoprotein, present in ruminants except sheep, was better digested by proteinases than by glycosidases, showing remarkable increase(p<0.01) of the ESR in accord with complete digestion(disappearance) of the PAS-B band by pronase, trypsin or chymotrypsin treatment of erythrocytes. In sheep, there was almost no any response to the various enzymes in general protein and glycoprotein profiles of the erythrocyte membranes except PAS-G, which was markedly decreased by pronase treatment of the erythrocytes. Nevertheless, the ESRs were accelerated in erythrocytes treated with pronase, trypsin, chymotrypsin and neuraminidase. Erythrocyte osmotic fragility was increased in erythrocytes treated with only pronase among five enzymes in all the human and ruminant animals used in this study.

  • PDF

The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking (보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이)

  • Han, Young-Min;Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae;Yi, Kyung-Ok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.