• 제목/요약/키워드: Fragility Analysis

검색결과 417건 처리시간 0.026초

모드기여도를 고려한 복수모드구조물의 지진취약도분석 (Seismic Fragility Analysis of Multi-Modes Structures Considering Modal Contribution Factor)

  • 조양희;조성국
    • 한국지진공학회논문집
    • /
    • 제6권4호
    • /
    • pp.15-22
    • /
    • 2002
  • 이 연구는 원자력발전소 구조물의 확률론적 내진성능을 평가하는 수단으로 이용되고 있는 지진취약도분석 기법에 대하여 소개하고, 지진취약도분석에 입력자료로 제공되는 기본변수의 특성에 대하여 논의하였다. 특히, 지진취약도 분석결과에 지대한 영향을 미칠 수 있는 입력변수의 하나인 응답스펙트럼형태계수의 정의 방법을 개선하였다. 새로운 응답스펙트럼형태계수는 구조물의 고유진동모드별 기여도가 전체 구조응답에 미치는 영향을 고려할 수 있도록 모드별 기여도를 이용하여 표현하였다. 대표적인 원자력발전소 구조물을 대상으로 예제분석을 수행하고, 제안된 응답스펙트럼형태계수의 유용성 및 적용성을 검증하였다. 특히, 이 논문의 방법은 복합모드감쇠특성을 갖는 구조물의 경우에도 효과적으로 적용될 수 있음을 확인하였다.

단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구 (A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System)

  • 박상기;조정래;조창백;이진혁;김동찬
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

고강도 콘크리트의 취도계수에 관한 실험적 연구 (An experimental study on the fragility factor of high strength concrete)

  • 김희두;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

Fragility analysis of concrete-filled steel tube arch bridge subjected to near-fault ground motion considering the wave passage effect

  • Liu, Zhen;Zhang, Zhe
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.415-429
    • /
    • 2017
  • This paper focuses on the impact of the wave passage effect on the long-span bridge. In order to make the wave passage effect more obvious, ground motion samples are selected from the near-fault ground motion of the 1999 Chi-Chi earthquake and an arch bridge with a 280m main span is selected as a bridge sample. The motion ground samples are divided into two groups according to the characteristics of near-fault. A sequence of fragility curves is developed. It is shown that the seismic damage is increased by the wave passage effect and the increase is more obvious in the near-fault ground motion.

Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending

  • Yazdabad, Mohammad;Behnamfar, Farhad;Samani, Abdolreza K.
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.95-102
    • /
    • 2018
  • Seismic fragility curves of concrete cylindrical tanks are determined using the finite element method. Vulnerabilities including sloshing of contents, tensile cracking and compression failure of the tank wall due to bending are accounted for. Effects of wall flexibility, fixity at the base, and height-diameter ratio on the response are investigated. Tall, medium and squat tanks are considered. The dynamic analysis is implemented using the horizontal components of consistent earthquakes. The study shows that generally taller tanks are more vulnerable to all of the failure modes considered. Among the modes of failure, the bending capacity of wall was shown to be the critical design parameter.

Effect of slab stiffness on floor response spectrum and fragility of equipment in nuclear power plant building

  • Yousang Lee;Ju-Hyung Kim;Hong-Gun Park
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3956-3972
    • /
    • 2023
  • The floor response spectrum (FRS) is used to evaluate the seismic demand of equipment installed in nuclear power plants. In the conventional design practice of NPP structure, the FRS is simplified using the lumped-mass stick model (LMSM), assuming the floor slab as a rigid diaphragm. In the present study, to study the variation of seismic response in a floor, the FRSs at different locations were generated by 3-D finite element model, and the response was compared to that of the rigid diaphragm model. The result showed that the FRS significantly varied due to the large opening in a floor, which was not captured by the rigid diaphragm model. Based on the result, seismic fragility analysis was performed for the anchorage of a heat exchanger, to investigate the effect of location-dependent FRS disparity on the high confidence low probability of failure (HCLPF).

부산 및 인천항만 안벽구조물의 지진취약도 예측 (Estimation of Seismic Fragility for Busan and Incheon Harbor Quay Walls)

  • 김영진;김동현;이기남;박우선
    • 한국해안·해양공학회논문집
    • /
    • 제25권6호
    • /
    • pp.412-421
    • /
    • 2013
  • 최근 서해안 등지에서 중소규모 지진이 빈번하게 발생하고 있다. 이러한 지진에 의한 항만 구조물의 손상 및 파괴는 국가 경제에 큰 피해를 유발할 수 있다. 따라서 이러한 지진에 대비하기 위한 내진 설계 및 지진 경보시스템 개발이 필요한 실정이다. 본 연구에서는 항만 지진 피해 예측 시스템에 입력치 제공을 위한 부산 및 인천항의 안벽 구조물의 지진 취약도 해석을 수행하였다. 해석 대상은 부산 및 인천항의 잔교식, Caisson식, 부벽식, 블록식 안벽을 각각 4가지 Case를 해석하였으며 기능수행수준 및 붕괴방지수준에 대하여 변위기반 지진취약도 해석을 수행하였고 해석결과를 다른 항만의 안벽에도 적용할 수 있도록 회귀분석하였다.

Seismic fragility analysis of bridge response due to spatially varying ground motions

  • Kun, C.;Li, B.;Chouw, N.
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.297-316
    • /
    • 2015
  • The use of fragility curves in the design of bridges is becoming common these days. In this study, experimental data have been used to develop fragility curves for the potential of girder unseating of a three-segment bridge and a bridge-abutment system including the influence of spatially varying ground motions, pounding, and abutment movement. The ground excitations were simulated based on the design spectra for different soil conditions. The Newmarket Viaduct replacement bridge in Auckland was used as the prototype bridge. These fragility curves were also applied to the 2010 Darfield and 2011 Christchurch earthquakes. The study showed that for bridges with similar characteristics as the chosen prototype and with similar fundamental frequencies, pounding could increase the probability of girder unseating by up to 35% and 30% based on the AASHTO and NZTA seating length requirements, respectively. The assumption of uniform ground excitations in many design practices, such as the NZTA requirements, could potentially be disastrous as girders might have a very good chance of unseating (as much as 53% higher chances when considering spatial variation of ground motions) even when they are designed not to. In the case of superstructures with dissimilar frequencies, the assumption of fixed abutments could significantly overestimate the girder unseating potential when pounding was ignored and underestimate the chances when pounding was considered. Bridges subjected to spatially varying ground excitations simulated based on the New Zealand design spectra for soft soil conditions with weak correlation shows the highest chances of girders falling off, of up to 65% greater than for shallow soil excitations.

수치해석에 의한 강우 침투 시 사면 파괴시간의 확률론적 해석 (Probabilistic Failure-time Analysis of Soil Slope under Rainfall Infiltration by Numerical Analysis)

  • 조성은
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.45-58
    • /
    • 2019
  • 본 연구에서는 강우의 침투에 따른 토사사면의 파괴에 대한 강우강도-지속시간의 강우기준을 평가하기 위하여 수치해석에 의한 파괴시간의 확률론적 해석 절차를 제안하였다. 취약도 곡선은 시간에 따른 강우의 침투해석 결과를 반영하며 지반의 역학적 특성의 불확실성을 고려한 MCS에 의한 확률론적 사면 안정해석의 결과로부터 강우강도-지속기간의 함수로 생성하였다. 확률론적 해석에서 한계상태함수를 계산하기 위하여 강우의 침투해석과 연동된 사면 안정해석을 수행하였다. 생성된 사면의 취약도 곡선들을 기반으로 확률론적 사면 파괴분포 분석을 수행하여 지반의 불확실성을 고려한 사면 파괴 유발 강우기준을 평가하였다. 제안된 사면 파괴분포 분석법은 강우의 침투로 인한 사면 파괴의 과정을 분석하고 사면 파괴가 발생할 수 있는 시간을 예측하는데 유용하게 사용될 수 있다.

Seismic assessment of R/C residential buildings with infill walls in Turkey

  • Korkmaz, Kasim Armagan;Kayhan, Ali Haydar;Ucar, Taner
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.681-695
    • /
    • 2013
  • In 1999 Marmara and 2011 Van earthquakes in Turkey, majority of the existing buildings either sustained severe damage or collapsed. These buildings include masonry infill walls in both the interior and exterior R/C frames. The material of the masonry infill is the main variant, ranging from natural stones to bricks and blocks. It is demanding to design these buildings for satisfactory structural behavior. In general, masonry infill walls are considered by its weights not by interaction between walls and frames. In this study, R/C buildings with infill walls are considered in terms of structural behavior. Therefore, 5 and 8-story R/C buildings are regarded as the representative models in the analyses. The R/C representative buildings, both with and without infill walls were analyzed to determine the effects of structural behavior change. The differences in earthquake behavior of these representative buildings were investigated to determine the effects of infill walls leading structural capacity. First, pushover curves of the representative buildings were sketched. Aftermath, time history analyses were carried out to define the displacement demands. Finally, fragility analyses were performed. Throughout the fragility analyses, probabilistic seismic assessment for R/C building structures both with and without infill walls were provided. In this study, besides the deterministic assessment methodology, a probabilistic approach was followed to define structural effect of infill walls under seismic loads.