• Title/Summary/Keyword: Fractured Surface

Search Result 370, Processing Time 0.023 seconds

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

EFFECT OF PORCELAIN SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN FORCELAIN AND COMPOSITE RESIN (도재 표면처리가 도재와 도재 수리용 복합레진간 전단결합강도에 미치는 영향)

  • Koh, Eun-Sook;Lee, Sun-Hyung;Chung, Heon-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.1
    • /
    • pp.23-36
    • /
    • 1994
  • Most investigators recommended that porcelain surface should be roughened with abrasives and/or be etched with acid in repairing the fractured porcelain with composite resin. This study was designed to evaluate the effect of porcelain surface treatments on the bond strength between porcelain and composite resin by measuring the shear bond strength and observing the porcelain surface with SEM. 48 porcelain disc were fabricated with Vintage porcelain and embedded in epoxy resin with the test surface exposed. The specimens were divided four groups at random and the test surfaces of the four groups were prepared as follows : Group 1 : Porcelain surface was roughened with a fine diamond and treated with 32% phosphoric acid gel for 10 seconds. Group 2 : Porcelain surface was roughened with a fine diamond and etched with 8% hydrofluoric acid gel for 5 minutes. Group 3 : Porcelain surface was roughened with a coarse diamond and treated with 32% phosphoric acid gel for 10 seconds. Group 4 : Porcelain surface was roughened with a coarse diamond and etched with 8% hydrofluoric acid gel for 5 minutes. All specimens were washed for 30 seconds. A representative specimen of each group was selected and the porcelain surface was observed with SEM at 1000 magnification. Remaining specimens were silanated, bonded with composite resin, thermocycled, and shear-tested on specially designed zig connected to Instron machine. The results were as follows : 1. The shear bond strength of the group etched with hydrofluoric acid was significantly higher than that of group treated with phosphoric acid(p<0.01). 2. The shear bond strength of the group roughened with a fine diamond was not significantly different from that of the group roughened with a coarse diamond(p>0.01). 3. SEM examination of prepared porcelain surfaces revealed that the surface etched with hydrofluoric acid showed numerous microporosities, undercut, and rougher surface than the surface treated with phosphoric acid. 4. All specimens etched with hydrofluoric acid showed cohesive failure within porcelain, but specimens treated with phosphoric acid mainly showed adhesive failure between porcelain and composite resin.

  • PDF

AN EXPERIMENTAL STUDY ON SHEAR BOND STRENGTH OF GLASS IONOMER CEMENT TO DENTIN SURFACE FOLLOWING SURFACE CONTIONING (상아질 표면처리가 글라스 아이오노머 시멘트의 결합강도에 미치는 영향에 관한 연구)

  • Lee, Kwang-Woo;Hong, Chan-Ui;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.104-114
    • /
    • 1992
  • The purpose of this study was to evaluate the shear bond strength of glass ionomer cement(Ketacfil, ESPE, Co.) against dentin surface which had been treated with surface conditioning agents(distilled water, 5% sodium hypochlorite solution, Ketac - conditioner, 40% polyacrylic acid). In this study, 60 human molars with sound and healthy crown portion which were previously extracted for orthodontic or periodontal problem. The dentin surfaces of these teeth were exposed with wet trimmer and polished with 150 - grit and 600 - grit silicon carbide paper and the teeth were divided into four groups(15 teeth per group) according to the following surface conditioning methods. Group I : Surface treatment with distilled water as control group. Group II : Surface conditioning with 5% sodium hypochlorite solution. Group III : Surface conditioning with Ketac conditioner. Group IV : Surface conditioning with 40% polyacrylic acid. The shear bond strengths were measured by Autograph(Shimatzu Co. Japan). The result of the evaluations were then subjected to statistical analysis using one - way analysis of variance and Duncan test and the results were as follows : 1. The shear bond strength accrding to the dentin surface conditioning conditions was highest in Ketac conditioner group, with measurements of $44.44{\pm}0.74(kg/cm^2)$ and lowest in the distilled water group, with measurements of $28.84{\pm}0.88(kg/cm^2)$. 2. Statistically significant differences were found between surface conditioning with 5% sodium hypochlorite solution group or Ketac conditioner group and distilled water group(P<0.01). 3. Also, statistically significant difference was found between surface conditioning with distilled water group and 40% polyacrylic acid group(P<0.05). 4. Overall difference in statistical significance between the groups was not found (P<0.05). 5. Fractured dentin surface treated with conditioning solutions showed cohesive fracture. 6. Distilled water group and 5% sodium hypochlorite solution group removed the smear layer less effectively. 7. Conditioning dentin with Ketac conditioner and 40% polyacrylic acid resulted in the removal of a significant amount of the smear layer without removing the tubular plugs and dissolving the peritubular dentin.

  • PDF

Attachment of Human Gingival Fibroblast to Various Subgingival Restorations;A Comparative Study in Vitro (다양한 치은 연하 수복물에 대한 치은 섬유아 세포 부착 연구)

  • Lee, Eun-Suk;Song, In-Taeck;Lim, Jeong-Su;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.621-636
    • /
    • 1999
  • When mucoperiosteal flaps are positioned and sutured to desirable position, the wound contains several interface between tissues which differ fundamentally in composition & biological reaction. Thus the C-T surface of the flap will, on one hand, oppose another vascularized surface, and on the other, the avascular dental material for example, when root resoptions, fractured root, endodontic perforation, deep root carious lesions were filled with amalgam, glass ionomer, resin etc. Recently, a number of case report described the successful treatment of a subgingival root lesion with restorative material & free gingival graft, open flap surgery, but more objective research was needed . Most of study on restorative materials were concerned for cytotoxicity not for actual healing event on that materials and its influencing factors such as biocompatibility, surface wettability, surface topography . The aim of this in vitro study was to evaluate the effect of amalgam, resin modified glass ionomer, composite resin per se, and their surface roughness on the growth of human gingival fibroblast. The cells were obtained and placed on culture flask and incubated for 3 days with the prepared test materials. Then count the attached cell number with hemocytometer,(n=12) and 2 samples were examined with SEM about attachment cell morphology . Another 4 samples were evaluated on their surface roughness with Talysurf and average surface roughness value(Ra) were obtained. Statistical difference in attached cell number, roughness value were analyzed using ANOVA. The number of attached cell was as follows, for root dentin specimen 16.7${\pm}$4.41, resin modified glass ionomer 14.0${\pm}$4.15, resin 8.13${\pm}$3.63, amalgam 0.72${\pm}$3.33(${\times}10^3$). Between root dentin and resin-modified glass ionomer, no significant difference was observed, but resin, amalgam showed a significant less cell numbers than for root dentin, resin modified glass ionomer cement. SEM examination expressed many cell surface attachment apparatus in root dentin and resin modified glass ionomer specimens. For resin specimen, cell attachment was observed but exposed less appratus. The average surface roughness value are following results. Dentin specimen 0.6972${\pm}$ 0.104, resin modified glass ionomer 0.0822${\pm}$0.009, resin 0.0875${\pm}$0.005, amalgam 4.2145${\pm}$0.985(${\mu}m$). Between root dentin, resin-modified glass ionomer, and resin, no significant difference was observed, but amalgam showed a significant more rough surface than other groups. When evlauated the interrelationship between cell attachment and surface roughness, therefore, there was weak reverse correlation.(pearson correlation : - 0.593) These results suggest that resin modified glass ionomer have the favorable healing potential when used for subgingival restoration. And for relationship between cell attachment and surface characteristics, further investigations were needed.

  • PDF

A Study on the Evaluation Technique of Damage of Metal Matrix Composite Using X-Ray Fractography Method (X선 프렉토그래피기법을 이용한 금속복합재료의 피로손상 해석에 관한 연구)

  • Park, Young-Chul;Yun, Doo-Pyo;Park, Dong-Sung;Kim, Deug-Jin;Kim, Kwang-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.172-180
    • /
    • 1998
  • It is attempted to verify the Quantitative relationship between fracture mechanical parameters (${\Delta}K$, $K_{max}$) and X-ray parameters (residual stress, half-value breadth) of A12009-15v/o $SiC_w$ composite, and normalized SS41 steel. In this study, fatigue crack propagation test were carried out and X-ray diffraction was applied to fatigue fractured surface in order to investigate the change of residual stress and half-value breadth on fatigue fractured surface. And it is loaded prestrain to each tensile specimen, A12009-15v/o $SiC_w$ composite(0.3, 0.5, 1, 1.5, 2%) and normalized SS41 steel(0.63, 2.25, 7.50, 13.7, 20%), for investigating plastic strain rate using nondestructive measurement method. X-ray diffraction was applied to the prestrained tensile specimens in order to measure the change of residual stress and half-value breadth.

  • PDF

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

In vitro study of compressive fracture strength of Empress 2 crowns cemented with various luting agents

  • Kim Min-Ho;Yang Jae-Ho;Lee Sun-Hyung;Chung Hun-Young;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.260-272
    • /
    • 2001
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic restorations because of their low strength. Their relatively lower strength and resistance to fracture have restricted the use of all-ceramic crowns to anterior applications where occlusal loads are lower. But there has been increasing interest in all-ceramic restorations because patients are primarily concerned with improved esthetics. Many efforts have been made to in prove the mechanical properties of dental ceramics. This study was designed to elucidate the influence of the luting agent on the strength of the Empress 2 crown (staining technique) cemented on human teeth. Seventy extracted human permanent molar teeth were chosen. Teeth were prepared for Empress 2 crowns with milling machine on a surveyor. A dental bur was placed in the mandrel that was positioned so that the long axis of the bur was perpendicular to the surveyor base. Dimensions of the Empress 2 crown preparation were $6^{\circ}$ taper on each side, $1.5{\pm}0.1mm$ shoulder margin, and 4mm crown height. The luting cements used in this study were as follow: 1. Uncemented 2. Zinc phosphate cements (Confi-Dental) 3. Conventional glass ionomer cement : Fuji 1 (GC) 4. Resin-modified glass ionomer cements : Fuji plus (GC) 5. Adhesive cements : Panavia F (Kuralay), Variolink II (Vivadent), Choice (Bisco). Fracture test using Instron. The crowns were loaded in compressive force to evaluate the effect of these cements on the breaking strength of these all-ceramic crowns. A steel ball with a diameter of 4mm was placed on the occlusal surface and load was applied to the steel ball by a cylindrical bolt with a crosshead speed of 0.5mm per minute until fracture occurred. The fractured surface was examined using Scanning Electron Microscopic Image (SEM) to discover the correlation between fracture strength and bonding capacity. Within the limitation of this in vitro study design, the results were as follows : 1. fomentations significantly increased the fracture resistance of Empress ceramic crowns compared to control. Uncemented (206.9 N): ZPC (812.9 N): Fuji 1 (879.5 N): Fuji Plus (937.7 N): Choice (1105.4 N): Variolink II (1221.1 N): Panavia F (1445.2 N). 2. Resin luting agent, treated by a silane bond enhancing agents, yielded a significant increase in fracture resistance. In some of the Panavia F group, a fracture extended into dentin. 3. According to SEM images of fractured Empress crowns, the stronger the bond at both interfaces(crown and die), the more fracture strength was acquired.

  • PDF

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

The Effect of Weld Line on the Mechanical Strengths and its Elimination Process in the Zr-4 Resistance Upset Welds (지르칼로이-4의 저항업셋용접에서 용접선이 기계적성질에 미치는 영향과 그 소멸과정)

  • Koh, Jin-Hyun;Lee, Jung-Won;Jung, Sung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • The objective of this study is to investigate the effect of weld line on the mechanical strengths and the process of weld line elimination in the Zircaloy-4 resistance upset welding for the fabrication of heavy water reactor fuel rods. The weld current and the amount of upset increased linearly with the main heat, in which two relations between them were derived. It was found that the threshold to obtain sound weld was 50% of main heat in terms of weld upset size, mechanical strengths and weld line elimination. The weld microstructure of resistance upset welds of Zircaloy-4 comprsied basketweave, Widmanstatten and martensite respectively by changing the main heats. Dimples on uniaxially fractured surface at weld line in the Zr-4 welds were larger and deeper compared with those on biaxially fractured surface. It was also found that the process of the weld line elimination in the resistance upset weld of Zircaloy-4 could be divided into three stages in terms of the presence of many pores, their shrinkage and elimination, and the shrinkage of the original weld interface with increasing weld currents.

  • PDF