• Title/Summary/Keyword: Fracture simulation

Search Result 504, Processing Time 0.024 seconds

L-System Based Procedural Synthesis Method to Efficiently Generate Dense, Radial, and Concentric Cracks of Glass (유리의 미세, 방사상, 동심원 균열을 효율적으로 생성하기 위한 L-System 기반의 절차적 합성 방법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • We propose a complex crack generation technique which is represented when impact is applied to glass. The crack patterns expressed when external forces are applied to the glass are classified into dense, radial, and concentric cracks, and we use procedural methods to efficiently represent crack patterns. Based on the input external force, we synthesize the crack example and apply the L-system based on this example to model the propagation shape of the crack in real time. Although physics based crack generation can analyze and model accurate cracks, it has a disadvantage of slow computation because of its high computational cost, and procedural methods have a relatively fast rate of continuity, but are not sufficient to capture accurate crack characteristics. We modeled cracks in glass using L-system to achieve both of these advantages. As a result, it realistically represented the microscopic crack patterns of glass in real time.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

A Study on Fatigue Crack at Coped Stringers of the Plate Girder Subway-Bridge (플레이트거더 지하철교량 세로보의 피로 균열에 관한 연구)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.713-724
    • /
    • 2004
  • A fatigue crack found at the coped stringer of the old dismantled Dangsan Subway Bridge was numerically simulated. A model of a single span of the plate girder bridge with its beam elements was created and analyzed in order to obtain the nominal stress history caused by trains. A detailed FEM analysis of the coped stringer was conducted using a shell element model. A fracture mechanical model was used to estimate crack propagation. The stress intensity factors were calculated using the J-Integral method. The simulation with some reasonable assumptions showed that the calculated crack lengths were comparable to those found on the site.

The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study

  • Ha, Seung-Ryong;Kim, Sung-Hun;Han, Jung-Suk;Yoo, Seung-Hyun;Jeong, Se-Chul;Lee, Jai-Bong;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.187-197
    • /
    • 2013
  • PURPOSE. The purpose of this study was to evaluate various core designs on stress distribution within zirconia crowns. MATERIALS AND METHODS. Three-dimensional finite element models, representing mandibular molars, comprising a prepared tooth, cement layer, zirconia core, and veneer porcelain were designed by computer software. The shoulder (1 mm in width) variations in core were incremental increases of 1 mm, 2 mm and 3 mm in proximal and lingual height, and buccal height respectively. To simulate masticatory force, loads of 280 N were applied from three directions (vertical, at a $45^{\circ}$ angle, and horizontal). To simulate maximum bite force, a load of 700 N was applied vertically to the crowns. Maximum principal stress (MPS) was determined for each model, loading condition, and position. RESULTS. In the maximum bite force simulation test, the MPSs on all crowns observed around the shoulder region and loading points. The compressive stresses were located in the shoulder region of the veneer-zirconia interface and at the occlusal region. In the test simulating masticatory force, the MPS was concentrated around the loading points, and the compressive stresses were located at the 3 mm height lingual shoulder region, when the load was applied horizontally. MPS increased in the shoulder region as the shoulder height increased. CONCLUSION. This study suggested that reinforced shoulder play an essential role in the success of the zirconia restoration, and veneer fracture due to occlusal loading can be prevented by proper core design, such as shoulder.

Evaluation of Crack Propagation in Silicon Anode using Cohesive Zone Model during Two-phase Lithiation (접착영역 모델을 사용한 2상 리튬 이온 충전 시 실리콘 음극 전극의 균열진전 해석)

  • Kim, Yong-Woo;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.297-304
    • /
    • 2019
  • In this research, crack propagation in a silicon anode during two-phase lithiation was evaluated using a cohesive zone model. The phase transition from crystalline silicon to lithiated silicon causes compressive yielding due to the high volume expansion rate. Li-ion diffuses from the surface of the silicon to its core, and the complex deformation mechanisms during lithiation cause tensile hoop stress along the surface. The Park-Paulino-Roesler (PPR) potential-based cohesive zone model that guarantees consistent energy dissipation in mixed-mode fracture was adopted to simulate edge crack propagation. It was confirmed that the edge crack propagation characteristics during lithiation from the FEM simulation results coincided with the real experimental results. Crack turning observed from real experiments could also be predicted by evaluating the angles of maximum tensile stress directions.

Distribution and evolution of residual voids in longwall old goaf

  • Wang, Changxiang;Jiang, Ning;Shen, Baotang;Sun, Xizhen;Zhang, Buchu;Lu, Yao;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2019
  • In this paper, simulation tests were conducted with similar materials to study the distribution of residual voids in longwall goaf. Short-time step loading was used to simulate the obvious deformation period in the later stage of arch breeding. Long-time constant loading was used to simulate the rheological stage of the arch forming. The results show that the irregular caving zone is the key area of old goaf for the subsidence control. The evolution process of the stress arch and fracture arch in stope can be divided into two stages: arch breeding stage and arch forming stage. In the arch breeding stage, broken rocks are initially caved and accumulated in the goaf, followed by the step deformation. Arch forming stage is the rheological deformation period of broken rocks. In addition, under the certain loads, the broken rock mass undergoes single sliding deformation and composite crushing deformation. The void of broken rock mass decreases gradually in short-time step loading stage. Under the water lubrication, a secondary sliding deformation occurs, leading to the acceleration of the broken rock mass deformation. Based on above research, the concept of equivalent height of residual voids was proposed, and whose calculation equations were developed. Finally, the conceptual model was verified by the field measurement data.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.