• Title/Summary/Keyword: Fracture set

Search Result 191, Processing Time 0.032 seconds

Durability Evaluation of Hybrid Expansion Joint System with Improved Replacement (보수성을 개선한 복합형 신축이음장치(HRS) 내구성 평가)

  • Jung Woo Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Durability was evaluated by performing a full-scale vertical load fatigue test and a wheel load performance test on the HRS, which reduces the replacement time of the existing expansion joint and improves serviceability to allow partial replacement by lane. As a result of the vertical load fatigue test, the maximum stress of the rail-type expansion joint is 170 MPa, which is about 47.8% of the yield strength of the HRS expansion joint rail 355 MPa. The vertical load fatigue test of the HRS expansion joint with improved serviceability set the size and load of the load plate according to the road bridge design standards, did not show any fracture behavior in the vertical load fatigue test and the wheel load performance test 2 million times, and its durability and safety were verified.

Effect of dentin roughening and type of composite material on the restoration of non-carious cervical lesions: an in vivo study with 18 months of follow-up

  • Sanjana Verma;Rakesh Singla;Gurdeep Singh Gill;Namita Jain
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.4
    • /
    • pp.35.1-35.14
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the impact of dentin roughening and the type of composite resin used (either bulk-fill flowable or nanohybrid) on the restoration of non-carious cervical lesions (NCCLs) with an 18-month follow-up period. Materials and Methods: This prospective split-mouth study included 36 patients, each with a minimum of 4 NCCLs. For each patient, 4 types of restorations were performed: unroughened dentin with nanohybrid composite, unroughened dentin with bulk-fill flowable composite, roughened dentin with nanohybrid composite, and roughened dentin with bulk-fill flowable composite. A universal bonding agent (Tetric N Bond Universal) was applied in self-etch mode for all groups. The restorations were subsequently evaluated at 6, 12, and 18 months in accordance with the criteria set by the FDI World Dental Federation. Inferential statistics were computed using the Friedman test, with the level of statistical significance established at 0.05. Results: The 4 groups exhibited no significant differences in relation to fracture and retention, marginal staining, marginal adaptation, postoperative hypersensitivity, or the recurrence of caries at any follow-up point. Conclusions: Within the limitations of the present study, over an 18-month follow-up period, no significant difference was present in the clinical performance of bulk-fill flowable and nanohybrid composite restorations of non-carious cervical lesions. This held true regardless of whether dentin roughening was performed.

Two-Dimensional Interpretation of Ear-Remote Reference Magnetotelluric Data for Geothermal Application (심부 지열자원 개발을 위한 원거리 기준점 MT 탐사자료의 2차원 역산 해석)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.145-155
    • /
    • 2005
  • A two-dimensional (2-D) interpretation of MT data has been performed for the purpose of fracture detection for geothermal development. Remote stations have been operated in Kyushu, Japan (480 km apart) as well as in Korea (60 km and 165 km apart in 2002 and 2003 data set, respectively). Apparent resistivity and phase curves calculated by remote processing with the Japan remote data showed enough quality for 2-D inversion for the whole frequency range. Remote reference processing with Korea remote reference data also showed quite good continuity in apparent resistivity and phase curves except some noisy frequency bands; around the power frequency, 60 Hz, and around the dead band $10^{-1}Hz\;Hz\;\~1\;Hz$, where the natural EM signal is known to be very weak. Even though the subsurface showed severe three-dimensional (3-D) characteristics in the survey area so that 2-D inversion by itself could not give enough information for deep geological structures, the 2-D inversion for the 5 survey lines showed several common features. The conductive semi-consolidate mudstone layer is dipping from north to south (about 500 m depth on the south and 200 m on the north most part of the survey area). The boundary between the low (L-2) and high (H-2) resistivity anomalies can be thought as a major fault with strike $N15^{\circ}E$, passing through the sites 206, 112 and 414. The shallow (< 1 km) conductive anomalies (L-4) seem to be fracture zones having strike E-W (at site 105) and $N60^{\circ}W$ (at site 434). And there exists a conductive layer in the western and west-southern part of the survey area in the depth below $2\~3\;km$, for which further investigation is to be needed.

Surgical Management of Comminuted Midshaft Clavicle Fractures Using Reconstruction Plate and Circumferential Wiring: Does the Circumferential Wiring Interfere with the Bone Union? (쇄골 간부 복합 골절에서 재건 금속판 및 환 강선을 이용한 수술적 치료: 환 강선이 골 유합을 방해하는가?)

  • Kim, Kyung-Tae;Shin, Chung-Shik;Park, Young-Chul;Kim, Dong-hyun;Kim, Min-Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.245-252
    • /
    • 2021
  • Purpose: This study examined the radiological and clinical outcomes of internal fixation using a reconstruction plate and 21G circumferential wire in comminuted midshaft clavicular fractures. Materials and Methods: A retrospective cohort study was performed on 51 patients between 2005 and 2019. Thirty-two patients underwent internal fixation with a reconstruction plate and a 21G circumferential wire with minimal soft tissue detachment, and 19 patients underwent surgery without a wire. The patients were assessed with the radiographic parameters, the University of California at Los Angeles (UCLA) score, and the visual analogue scale (VAS) pain score. Based on this, patients who operated without a circumferential wire were set as the control group, and the differences in bone union between the two groups were compared. Results: Thirty-two patients were followed-up for an average of 65 weeks, and 19 patients in the control group were followed-up for an average of 56 weeks. The radiological evaluation confirmed the anatomical reduction and bone union in all 32 patients. No case of nonunion was present. The UCLA score was 32.38 on average and 33.11 in the control group (p=0.395). The VAS score was 1.00 on average and 0.84 in the control group (p=0.668). A significant difference in the bony union time was observed between the group who underwent internal fixation with a reconstruction plate and a 21G circumferential wire with minimal soft tissue detachment, and the control group (p=0.015). On the other hand, there was no statistical significance when other variables were controlled (p=0.107). Conclusion: For displaced midshaft clavicular fractures, internal fixation using a reconstruction plate and 21G circumferential wire maintained accurate anatomical reduction. The satisfactory clinical and radiological results mean that internal fixation using a reconstruction plate and 21G circumferential wire may be a good option for surgical treatment.

The Trend of Change in Oral and Maxillofacial Injuries of Pediatric Patients in the COVID-19 Pandemic: a Regional Emergency Medical Center and Dental Hospital Study (COVID-19 팬데믹 상황에서 소아 환자의 구강악안면 외상의 변화 추이: 단일 기관 연구)

  • Suebin Choi;Chankue Park;Jonghyun Shin;Taesung Jeong;Eungyung Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.3
    • /
    • pp.318-333
    • /
    • 2023
  • The purpose of this study is to analyze changes in dental trauma in children under the age of 12 during the period of Coronavirus Disease 2019 (COVID-19). March 2020, when COVID-19 was officially declared a pandemic by the World Health Organization, was set as the starting point for COVID-19. From March 2018 to February 2020, subjects in the pre-COVID-19 period were classified as the Pre-COVID-19 group, and from March 2020 to March 2022, subjects in the post-COVID-19 period were classified as the COVID-19 group. Information related to trauma was collected through electronic medical records. The number of trauma patients before and after the outbreak of COVID-19 decreased significantly. During the COVID-19 period, there was no significant difference in the male-female ratio or the distribution order of age groups. In the COVID-19 group of permanent teeth, the ratio of trauma caused by personal mobility was higher than trauma caused by sports. In the COVID-19 group of permanent teeth, the ratio of crown fracture with pulp involvement was significantly higher than the ratio of crown fracture without pulp involvement. Changes in trauma patterns caused by COVID-19 were observed more clearly in school-aged children than in preschool children. In a pandemic situation such as COVID-19, it is expected to be used as a good educational basis for knowing that frequent diagnoses can change due to changes in the environment.

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.

CLINICAL AND RADIOGRAPHICAL EVALUATION OF IMPLANT-SUPPORTED FIXED PARTIAL PROSTHESES (임플랜트 지지 고정성 국소의치의 임상적, 방사선학적 평가)

  • Seo Ji-Young;Shim June-Sung;Lee Jae-Hoon;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.394-404
    • /
    • 2006
  • Statement of problem: A conventional 3-unit fixed partial denture design with a pontic between two retainers is the most commonly used. However in cases where the mental nerve is in close proximity to the second premolar, a cantilever design can be considered. As such, logical and scientific evidence is lacking for the number and position of implants to be placed for partially edentulous patients, and no clear-cut set of treatment principles currently exist. Purpose : The purpose of this study was to evaluate prognosis of implant-supported fixed partial dentures and to compare changes in bone level which may rise due to the different factors. Material and method : The present study examined radiographical marginal bone loss in patients treated with implant-supported fixed partial dentures (87 prostheses supported by 227 implants) and evaluated the influence of the span of the pontic, type of the opposing dentition. Clinical complications were studied using a retrospective method. Within the limitation of this study. the following result were drawn Result, 1. Seven of a total of 227 implants restored with fixed prostheses failed, resulting in a 96.9% success rate. 2. Complications encountered during recall appointments included dissolution of temporary luting agent (17 cases), porcelain fracture (8 cases), loosened screws (5 cases), gingival recession (4 cases), and gingival enlargement (1 case). 3. Marginal bone loss, 1 year after prosthesis placement, was significant(P<0.05) in the group that underwent bone grafting, however no difference in annual resorption rate was observed afterwards. 4. Marginal bono loss, 1 year post-placement, was greater in cantilever-type prostheses than in centric pontic protheses (P<0.05). 5. Marginal bone loss was more pronounced in posterior regions compared to anterior regions (P<0.05). 6. The degree of marginal bone loss was proportional to the length of the pontic (P<0.05). Conclusion: The success rate of implant-supported fixed partial dentures, including marginal bone loss, was satisfactory in the present study. Factors influencing marginal bone loss included whether bone graft was performed, location of the pontic (s), location of the surgical area in the arch pontic span. Long-term evaluation is necessary for implant-supported fixed partial dentures, as are further studies on the relationship between functional load and the number of implants to be placed.

Stability analysis of an existing tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel (복층터널의 분기터널 굴착에 따른 기존터널의 안정성 분석)

  • Kim, Han-eol;Kim, Jung-Joo;Lee, Jae-Kook;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.779-797
    • /
    • 2017
  • Recently, underground road construction is attracting attention because the ground transportation facilities in the urban area have reached the saturation level and traffic volume has increased and the air pollution has risen. Construction of underground roads is not only reduce trafficjam in downtown but also design the city eco-friendly, so existing roads as well as new roads go underground. It is essential to construct divergence tunnels that serve as IC (interchage) and JC (Junction) when constructing underpasses. Therefore, the analysis of the effect of the existing tunnel by the divergence tunnel should be considered. In this study, numerical analysis is performed to analyze the effect of existing tunnel on the excavation of the divergence tunnel. The divergence tunnels were set in 5 cases at $45^{\circ}$ intervals in the clockwise direction starting from the lower part of the existing tunnel. In each case, numerical analyses were carried out by using the DCM (Displacement Controlled Model) for applying the volume loss of 0.5%, 1.0% and 1.5%. As a result, when the volume loss increased, the effect on displacement, fracture range, and effect on stability increased as well. In addition, it was confirmed that the divergence tunnel located directly underneath is the weakest for the stability, and the case where the divergence tunnel is located diagonally rather than the vertical and horizontal direction is found to be vulnerable to displacement and lining destruction.

Interpretation on the subsurface velocity structure by seismic refraction survey in tunnel and slope (탄성파 굴절법 탐사를 이용한 지반 속도분포 해석-터널 및 절토 사면에의 적용 사례)

  • You Youngjune;Cho Chang Soo;Park Yong Soo;Yoo In Kol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.48-64
    • /
    • 1999
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsurface velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etc. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data quality Geophone spacing of 3 to 5m is recommended in the land slope area for house land development and 5 to 10m in the tunnel site. In refraction tomography technique, the number of source points should be more than a half of available channel number of instrument, which can make topographic effect ignorable. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700${\~}$1,200m/s, soft rock 1,200${\~}$1,800m/s. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss. In case of tunnel site, it is recommended in tunnel design and construction to consider that tunnel is in contact with soft rock layer where three lineaments intersecting each other are recognized from the results of the other survey.

  • PDF

A Case Study on Seismic Refraction Tomography Survey for Subsurface Structure Interpretation (지하구조 해석을 위한 탄성파 굴절법 토모그라피 탐사 사례연구)

  • 유영준;유인걸;송무영
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2001
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsUJiace velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etC. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data Quality. Geophone spacing of 3 to 5m is reconunended in the land slope area of house land development site. In refraction tomography technique, the number of source points should be more than a Cluarter of available channel number of instrument and the subsurface structure interpretation can be decreased the artifact of inversion by topographic effect. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700~1,200m/s, soft rock 1,200~1,800m/s on the velocity tomogram section. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss.

  • PDF