• 제목/요약/키워드: Fracture of moment connection

검색결과 56건 처리시간 0.034초

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대 실험 (Cyclic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections)

  • 이철호;전상우;김진호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.306-316
    • /
    • 2002
  • This paper summarizes the results of full-scale cyclic seismic testing on four RBS (reduced beam section) steel moment connections. Key test variables were web bolting vs. welding and strong vs. medium PZ (panel zone) strength. The specimen with medium PZ strength was specially designed to mobilize energy dissipation from both the PZ and RBS region in a balanced way; the aim was to reduce the requirement of expensive doubler plates. Both strong and medium PZ specimens with web-welding were able to provide sufficient connection rotation capacity required of special moment frames, whereas specimens with web-bolting showed inferior performance due to the premature brittle fracture of the beam flange across the weld access hole. In contrast to the case of web-welded specimens, the web-bolted specimens could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. If a quality welding for the beam-to-column joint is made as in this study, the fracture-prone area tends to move into the beam flange base metal within the weld access hole. Analytical study was also conducted to understand the observed base metal fracture from the engineering mechanics point of view.

  • PDF

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Effects of near-fault loading and lateral bracing on the behavior of RBS moment connections

  • Yu, Qi-Song Kent;Uang, Chia-Ming
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.145-158
    • /
    • 2001
  • An experimental study was conducted to evaluate the effects of loading sequence and lateral bracing on the behavior of reduced beam section (RBS) steel moment frame connections. Four full-scale moment connections were cyclically tested-two with a standard loading history and the other two with a near-fault loading history. All specimens reached at least 0.03 radian of plastic rotation without brittle fracture of the beam flange groove welds. Two specimens tested with the nearfault loading protocol reached at least 0.05 radian of plastic rotation, and both experienced smaller buckling amplitudes at comparable drift levels. Energy dissipation capacities were insensitive to the types of loading protocol used. Adding a lateral bracing near the RBS region produced a higher plastic rotation; the strength degradation and buckling amplitude were reduced. A non-linear finite element analysis of a one-and-a-half-bay beam-column subassembly was also conducted to study the system restraint effect. The study showed that the axial restraint of the beam could significantly reduce the strength degradation and buckling amplitude at higher deformation levels.

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향 (Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections)

  • 이철호;정종현;김정재
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.385-396
    • /
    • 2014
  • 1994년 미국 노스리지 지진 당시 상당 부분의 피해가 보 하부 플랜지에서 발생하였는데, 이의 원인으로 여러 가지가 거론되었지만 바닥슬래브와 합성작용에 의한 중립축 상승이 주요한 역학적 원인으로 인정되고 있다. 국내의 경우 지진에 저항하는 모멘트골조에 속하는 보(moment frame beam)의 경우에 순철골보로서 설계하고도 실제 시공시에는 보 상부 플랜지에 전단스터드를 필요 이상으로 과도하게 배치하는 오랜 관행이 존재하고 있어 내진성능 확보 차원에서 문제를 유발할 소지가 있다. 본 논문에서는 의도하지 않은 또는 과도한 합성작용이 내진성능에 미치는 부작용을 실물대 실험을 통해 재현하고 이의 개선방향을 모색하고자 하였다. 국내 관행에 따른 접합상세와 합성바닥구조를 갖는 실험체(PN700-C)의 경우, 합성도가 23% 정도임에도 불구하고, 상부플랜지 압축응력에 대해 중립축이 현저히 상승하였고 결국 3% 층간변위에서 콘크리트 압괴를 수반하면서 하부플랜지 취성파단이 발생하였다. 반면 합성바닥이 포함되어 있으나 합성작용이 최소화되도록 설계된 RBS접합부실험체(DB700-C)는 순철골(비합성) RBS접합부실험체(DB700-NC)와 유사한 이력거동을 보이면서 어떤 취성파괴도 없이 5% 수준의 뛰어난 층간변형 능력을 발휘하였다. 본 연구결과는 강구조접합부의 내진보강이나 신축에 있어 모멘트골조에 속한 철골보 및 접합부는 바닥구조와의 합성작용이 최소화되도록 설계 및 시공되어야 함을 시사한다.

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers

  • Jia, Liang-Jiu;Ge, Hanbin;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.687-704
    • /
    • 2014
  • A great number of moment-resisting steel structures collapsed due to ductile crack initiation at welded beam-column connections, followed by explosive brittle fracture in the Kobe (Hyogoken-Nanbu) earthquake in 1995. A series of experimental and numerical studies on cracking behaviors of beam-column connections in steel bridge piers were carried out by the authors' team. This paper aims to study the effect of post weld treatment on cracking behaviors of the connections during a strong earthquake event. Experiments of three specimens with different weld finishes, i.e., as-welded, R-finish, and burr grinding, were conducted. The experimental results indicate that the instants of ductile crack initiation are greatly delayed for the specimens with R-finish and burr grinding finishes compared with the as-welded one. The strain concentration effect in the connection is also greatly reduced in the specimens with post weld treatment compared with the as-welded one, which was also verified in the tests.

패널존의 강도비에 따른 기둥-보 접합부의 내진성능 평가 (Seismic Performance Evaluation of Beam-Column Connection for Panel Zone Strength)

  • 김성용;신창훈
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.11-20
    • /
    • 2007
  • 본 연구에서는 H형 기둥-보 접합부에서 스캘럽 주변의 파단을 피하기 위해 스캘럽을 생략하고 보와 기둥의 쉬어탭을 볼트로 체결한 후 보 플랜지의 양면에 커버 플레이트와 리브로 보강하는 방법을 제안하였다. 스캘럽을 생략함으로써 스캘럽에서의 응력집중의 빈도를 줄이고 용접부 주위에서의 취성파괴를 방지하여 건축물의 내진성능을 향상시키는데 본 연구의 목적을 둔다. 본 목적을 위해 총 4개의 실험체를 제작하고 반복 가력 실험을 실시하였다. 주요 실험변수는 패널존 강도비이고 실험체의 항복강도, 초기강성, 총소성회전에 대한각 부재의 기여도, 에너지 소산능력으로부터 제작된 실험체들이 특수모멘트골조 내진규정에 만족을 하는지와 실험에 사용된 변수에 대한 여러 영향을 밝히고자 하였다. 그 결과 모든 실험체는 층간변위 4%, 총소성회전 0.03rad.에 충분이 도달하여 1997 AISC의 내진규정에 따라 특수모멘트골조에 만족할 것이라 판단된다.

RHS기둥-보 접합부의 모멘트전달효율 평가 (Evaluation of Moment Transfer Efficiency of a Beam Web at RHS Column-to-Beam Connections)

  • 김영주;오상훈
    • 한국지진공학회논문집
    • /
    • 제10권4호
    • /
    • pp.67-76
    • /
    • 2006
  • 본 논문에서는 철골 각형강관단면(RHS) 기둥-보 접합부에서 웨브의 모멘트 전달효율을 평가하였다. 먼저, 5개의 철골보접합부에 대한 비선형 유한요소해석을 수행하였다. 이들은 접합부 상세가 다르게 설계되었고, 따라서 휨저항 성능이 각기 다르다. 해석결과 RHS 기둥을 가진 모델은 기둥 플랜지의 면외변형 때문에 WF(Wide Flange) 기둥을 가진 모델에 비해 모멘트 전달효율이 저하함을 보였다. 스캘럽(WAH)과 얇은 강관기둥 두께도 모멘트 전달효율의 저하를 가져오는 원인으로서, 결과적으로 보-기둥 접합부의 파단을 초래할 가능성이 크다. 해석과 이전의 실험결과를 기초로 하면, 응력집중은 모멘트 전달효율과 반비례하고, 접합부의 변형능력은 모멘트 전달효율의 저하에 따라 감소하는 것을 알 수 있다. 더 나아가서 바닥슬래브가 있는 합성보 접합부에 대한 유한요소해석결과는 중립축이 상부플랜지 방향으로 상승함으로써 모멘트 전달효율이 저하했고, 이러한 영향은 접합부의 조기 취성파단을 초래하는 것을 보였다.