DOI QR코드

DOI QR Code

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen (School of Civil Engineering, The University of Sydney) ;
  • Uy, Brian (School of Civil Engineering, The University of Sydney) ;
  • Li, Dongxu (School of Civil Engineering, The University of Sydney) ;
  • Wang, Jia (School of Civil Engineering, The University of Sydney)
  • Received : 2021.07.30
  • Accepted : 2021.12.15
  • Published : 2022.02.25

Abstract

This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Keywords

Acknowledgement

The research presented in this paper was supported by the Australian Research Council (ARC) under its Discovery Project scheme (Project ID: DP180100418). The first author is supported by the Engineering and Information Technologies Research Scholarship (EITRS) and the Postgraduate Research Support Scheme (PRSS) awarded by the University of Sydney. The authors are grateful to our industrial partners including Outokumpu, Stirlings, BUMAX and Hobson for supporting the stainless steel plates and bolts used in the experimental programme. Special acknowledgements to Mr. Con Logos (Outokumpu) and Mr. Anders Soderman (BUMAX) for their cooperation. Thanks are also given to Mr. Garry Towell, Dr. Mohanad Mursi, and all the other technical staff at the J.W. Roderick Laboratory for their assistance in the experimental programme. Finally, the authors would like to acknowledge the Sydney Informatics Hub (SIH) and the University of Sydney's high performance computing cluster (Artemis) for providing the high performance computing resources.

References

  1. Abidelah, A., Bouchair, A. and Kerdal, D.E. (2014), "Influence of the flexural rigidity of the bolt on the behavior of the T-stub steel connection", Eng. Struct., 81, 181-194. https://doi.org/10.1016/j.engstruct.2014.09.041.
  2. AS 1391-2007 (2017), Metallic Materials - Tensile testing at Ambient Temperature, Standards Australia, Sydney, Australia.
  3. AS/NZS 1554.6 (2012), Structural steel welding - Part 6: Welding Stainless Steels for Structural Purposes, Standards Australia/Standards New Zealand, Sydney/Wellington, Australia/New Zealand.
  4. Averseng, J., Bouchair, A. and Chateauneuf, A. (2017), "Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints", Steel Compos. Struct., 25(1), 45-55. https://doi.org/10.12989/scs.2017.25.1.045.
  5. Bao, Y. and Wierzbicki, T. (2004), "On fracture locus in the equivalent strain and stress triaxiality space", Int. J. Mech. Sci., 46(1), 81-98. https://doi.org/10.1016/j.ijmecsci.2004.02.006.
  6. Beg, D., Zupancic, E. and Vayas, I. (2004), "On the rotation capacity of moment connections", J. Const. Steel Res., 60(3), 601-620. https://doi.org/10.1016/S0143-974X(03)00132-9.
  7. Bouchair, A., Averseng, J. and Abidelah, A. (2008), "Analysis of the behaviour of stainless steel bolted connections", J. Constr. Steel Res., 64(11), 1264-1274. https://doi.org/10.1016/j.jcsr.2008.07.009.
  8. Bu, Y., Wang, Y. and Zhao, Y. (2019), "Study of stainless steel bolted extended end-plate joints under seismic loading", Thin Wall Struct., 144 106255. https://doi.org/10.1016/j.tws.2019.106255.
  9. Cai, Y. and Young, B. (2014), "Structural behavior of cold-formed stainless steel bolted connections", Thin-Walled Struct., 83, 147-156. https://doi.org/10.1016/j.tws.2014.01.014.
  10. Cai, Y. and Young, B. (2018), "Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures", Steel Compos. Struct., 29(2), 273-286. https://doi.org/10.12989/scs.2018.29.2.273.
  11. Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551.
  12. CEN EN 1993-1-4:2006+A1 (2015), Eurocode 3: Design of Steel Structures, Part 1-4: General Rules-Supplementary Rules for Stainless Steels, Comite Europeen de Normalisation, Brussels, Belgium.
  13. CEN EN 1993-1-8 (2005), Eurocode 3: Design of Steel Structures, Part 1-8: Design of Joints, Comite Europeen de Normalisation, Brussels, Belgium.
  14. CEN EN 1998-1 (2004), Eurocode 8: Design of structures for earthquake resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings, Comite Europeen de Normalisation, Brussels, Belgium.
  15. CEN EN/ISO 3506-1 (2009), Mechanical Properties of Corrosion-Resistant Stainless Steel Fasteners, Part 1: Bolts, Screws and Suds, Comite Europeen de Normalisation, Brussels, Belgium.
  16. CEN EN/ISO 4017 (2011), Hexagon Head Screws - Product Grades A and B, Comite Europeen de Normalisation, Brussels, Belgium.
  17. D'Aniello, M., Cassiano, D. and Landolfo, R. (2017), "Simplified criteria for finite element modelling of European preloadable bolts", Steel Compos. Struct., 24(6), 643-658. https://doi.org/10.12989/scs.2017.24.6.643.
  18. Diaz, C., Victoria, M., Marti, P. and Querin, O.M. (2011), "FE model of beam-to-column extended end-plate joints", J. Const. Steel Res., 67(10), 1578-1590. https://doi.org/10.1016/j.jcsr.2011.04.002.
  19. Eladly, M.M. (2020), "Behaviour of stainless steel beam-to-column bolted connections-Part 1: Simplified FE model", J. Const. Steel Res., 164, 105784. https://doi.org/10.1016/j.jcsr.2019.105784.
  20. Eladly, M.M. and Schafer, B.W. (2021), "Numerical and analytical study of stainless steel beam-to-column extended end-plate connections", Eng. Struct., 240, 112392. https://doi.org/10.1016/j.engstruct.2021.112392.
  21. Elflah, M., Theofanous, M. and Dirar, S. (2019a), "Behaviour of stainless steel beam-to-column joints-Part 2: Numerical modelling and parametric study", J. Constr. Steel Res., 152, 194-212. https://doi.org/10.1016/j.jcsr.2018.04.017.
  22. Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019b), "Behaviour of stainless steel beam-to-column joints-Part 1: Experimental investigation", J. Constr. Steel Res., 152, 183-193. https://doi.org/10.1016/j.jcsr.2018.02.040.
  23. Elflah, M., Theofanous, M., Dirar, S. and Yuan, H. (2019c), "Structural behaviour of stainless steel beam-to-tubular column joints", Eng. Struct., 184, 158-175. https://doi.org/10.1016/j.engstruct.2019.01.073.
  24. Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2016), "Bolted T-stubs: A refined model for flange and bolt fracture modes", Steel Compos. Struct., 20(2), 267-293. https://doi.org/10.12989/scs.2016.20.2.267.
  25. Gao, J.D., Du, X.X., Yuan, H.X. and Theofanous, M. (2021), "Hysteretic performance of stainless steel double extended end-plate beam-to-column joints subject to cyclic loading", Thin Wall Struct., 164, 107787. https://doi.org/10.1016/j.tws.2021.107787.
  26. Gao, J.D., Yuan, H.X., Du, X.X., Hu, X.B. and Theofanous, M. (2020), "Structural behaviour of stainless steel double extended end-plate beam-to-column joints under monotonic loading", Thin Wall Struct., 151, 106743. https://doi.org/10.1016/j.tws.2020.106743.
  27. Gervasio, H., Simoes da Silva, L. and Borges, L. (2004), "Reliability assessment of the post-limit stiffness and ductility of steel joints", J. Const. Steel Res., 60(3), 635-648. https://doi.org/10.1016/S0143-974X(03)00145-7.
  28. Girao Coelho, A.M. (2013), "Rotation capacity of partial strength steel joints with three-dimensional finite element approach", Comput. Struct., 116, 88-97. https://doi.org/10.1016/j.compstruc.2012.10.024.
  29. Girao Coelho, A.M., Bijlaard, F.S.K. and Simoes da Silva, L. (2004b), "Experimental assessment of the ductility of extended end plate connections", Eng. Struct., 26(9), 1185-1206. https://doi.org/10.1016/j.engstruct.2000.09.001.
  30. Girao Coelho, A.M., Bijlaard, F.S.K., Gresnigt, N. and Simoes da Silva, L. (2004a), "Experimental assessment of the behaviour of bolted T-stub connections made up of welded plates", J. Const. Steel Res., 60(2), 269-311. https://doi.org/10.1016/j.jcsr.2003.08.008.
  31. Grimsmo, E.L., Aalberg, A., Langseth, M. and Clausen, A.H. (2016), "Failure modes of bolt and nut assemblies under tensile loading", J. Const. Steel Res., 126, 15-25. https://doi.org/10.1016/j.jcsr.2016.06.023.
  32. Grimsmo, E.L., Clausen, A.H., Langseth, M. and Aalberg, A. (2015), "An experimental study of static and dynamic behaviour of bolted end-plate joints of steel", Int. J. Impact Eng., 85, 132-145. https://doi.org/10.1016/j.ijimpeng.2015.07.001.
  33. Hasan, M.J., Al-Deen, S. and Ashraf, M. (2019), "Behaviour of top-seat double web angle connection produced from austenitic stainless steel", J. Const. Steel Res., 155, 460-479. https://doi.org/10.1016/j.jcsr.2018.12.015.
  34. Hasan, M.J., Ashraf, M. and Uy, B. (2017), "Moment-rotation behaviour of top-seat angle bolted connections produced from austenitic stainless steel", J. Const. Steel Res., 136, 149-161. https://doi.org/10.1016/j.jcsr.2017.05.014.
  35. Huang, Y. and Young, B. (2014), "The art of coupon tests", J. Const. Steel Res., 96, 159-175. https://doi.org/10.1016/j.jcsr.2014.01.010.
  36. Iranpour, A., Hedayat, A.A. and Ahmadi Afzadi, E. (2019), "Rotational demand and capacity of conventional single-plate shear connections subjected to gravity loading", Eng. Struct., 184, 384-405. https://doi.org/10.1016/j.engstruct.2019.01.100.
  37. ISO 965-1 (2013), ISO General Purpose Metric Screw Threads - Tolerances -Part 1: Principles and Basic Data.
  38. Jaspart, J.P. and Weynand, K. (2016), Design of Joints in Steel and Composite Structures: Eurocode 3: Design of Steel Structures. Part 1-8 Design of Joints. Eurocode 4: Design of Composite Steel and Concrete Structures, ECCS Eurocode Design Manuals.
  39. Jaspart, J.P., Corman, A. and Demonceau, J.F. (2019), Ductility Assessment of Structural Steel and Composite Joints, Prague, Czech.
  40. Jia, L.J. and Kuwamura, H. (2014), "Ductile fracture simulation of structural steels under monotonic tension", J. Struct. Eng., 140(5), 04013115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000944
  41. Kanvinde, A.M. and Deierlein, G.G. (2006), "The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels", J. Struct. Eng., 132(12), 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907).
  42. Lee, Y.W. and Wierzbicki, T. (2004), Quick Fracture Calibration for Industrial Use, Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology
  43. Li, D., Uy, B. and Wang, J. (2019), "Behaviour and design of highstrength steel beam-to-column joints", Steel Compos. Struct., 31(3), 303-317. https://doi.org/10.12989/scs.2019.31.3.303.
  44. Liao, F., Wang, W. and Chen, Y. (2015), "Ductile fracture prediction for welded steel connections under monotonic loading based on micromechanical fracture criteria", Eng. Struct., 94, 16-28. https://doi.org/10.1016/j.engstruct.2015.03.038.
  45. Ling, Y. (1996), "Uniaxial true stress-strain after necking", AMP J. Technol., 5(1), 37-48.
  46. Nethercot, D.A. (1985), "Joint action and the design of steel frames", Struct. Eng., 63A(12), 371-379.
  47. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Const. Steel Res., 88 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  48. Piluso, V. and Rizzano, G. (2008), "Experimental analysis and modelling of bolted T-stubs under cyclic loads", J. Const. Steel Res., 64(6), 655-669. https://doi.org/10.1016/j.jcsr.2007.12.009.
  49. Piluso, V., Faella, C. and Rizzano, G. (2001), "Ultimate behavior of bolted T-stubs. I: Theoretical model", J. Struct. Eng., 127(6), 686-693. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(686).
  50. Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solids. 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7.
  51. Salih, E.L., Gardner, L. and Nethercot, D.A. (2010), "Numerical investigation of net section failure in stainless steel bolted connections", J. Constr. Steel Res., 66(12), 1455-1466. https://doi.org/10.1016/j.jcsr.2010.05.012.
  52. Salih, E.L., Gardner, L. and Nethercot, D.A. (2011), "Bearing failure in stainless steel bolted connections", Eng. Struct., 33(2), 549-562. https://doi.org/10.1016/j.engstruct.2010.11.013.
  53. Salih, E.L., Gardner, L. and Nethercot, D.A. (2013), "Numerical study of stainless steel gusset plate connections", Eng. Struct., 49, 448-464. https://doi.org/10.1016/j.engstruct.2012.11.032.
  54. Shi, G., Shi, Y., Wang, Y. and Bradford, M.A. (2008), "Numerical simulation of steel pretensioned bolted end-plate connections of different types and details", Eng. Struct., 30(10), 2677-2686. https://doi.org/10.1016/j.engstruct.2008.02.013.
  55. Simoes da Silva, L. and Girao Coelho, A. (2001), "A ductility model for steel connections", J. Const. Steel Res., 57(1), 45-70. https://doi.org/10.1016/S0143-974X(00)00009-2.
  56. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  57. Song, Y., Wang, J., Uy, B. and Li, D. (2020a), "Experimental behaviour and fracture prediction of austenitic stainless steel bolts under combined tension and shear", J. Const. Steel Res., 166, 105916. https://doi.org/10.1016/j.jcsr.2019.105916.
  58. Song, Y., Wang, J., Uy, B. and Li, D. (2020b), "Stainless steel bolts subjected to combined tension and shear: Behaviour and design", J. Const. Steel Res., 170, 106122. https://doi.org/10.1016/j.jcsr.2020.106122.
  59. Song, Y., Wang, J., Uy, B. and Li, D. (2021), "Behaviour and design of stainless steel-concrete composite beam-to-column joints", J. Const. Steel Res., 184, 106800. https://doi.org/10.1016/j.jcsr.2021.106800.
  60. Tartaglia, R., D'Aniello, M. and Zimbru, M. (2020), "Experimental and numerical study on the T-Stub behaviour with preloaded bolts under large deformations", Struct., 27, 2137-2155. https://doi.org/10.1016/j.istruc.2020.08.039.
  61. Tartaglia, R., D'Aniello, M., Zimbru, M. and Landolfo, R. (2018), "Finite element simulations on the ultimate response of extended stiffened end-plate joints", Steel Compos. Struct., 27(6), 727-745. https://doi.org/10.12989/scs.2019.33.1.143.
  62. Thai, H.T. and Uy, B. (2015), "Finite element modelling of blind bolted composite joints", J. Constr. Steel Res., 112, 339-353. https://doi.org/10.1016/j.jcsr.2015.05.011.
  63. Vasdravellis, G., Karavasilis, T.L. and Uy, B. (2014), "Design rules, experimental evaluation, and fracture models for highstrength and stainless-steel hourglass shape energy dissipation devices", J. Struct. Eng., 140(11), 04014087. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001014.
  64. Wang, J., Uy, B. and Li, D. (2019a), "Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates", Steel Compos. Struct., 32(1), 141-156. https://doi.org/10.12989/scs.2019.32.1.141.
  65. Wang, J., Uy, B. and Li, D. (2019b), "Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns", Steel Compos. Struct., 33(5), 681-697. https://doi.org/10.12989/scs.2019.33.5.681.
  66. Wang, J., Uy, B., Thai, H.T. and Li, D. (2018), "Behaviour and design of demountable beam-to-column composite bolted joints with extended end-plates", J. Constr. Steel Res., 144, 221-235. https://doi.org/10.1016/j.jcsr.2018.02.002.
  67. Weynand, K., Jaspart, J.P. and Steenhuis, M. (1996), The Stiffness Model of Revised Annex J of Eurocode 3, Pergamon, Oxford.
  68. Yang, F., Liu, Y., Xin, H. and Veljkovic, M. (2021a), "Fracture simulation of a demountable steel-concrete bolted connector in push-out tests", Eng. Struct., 239, 112305. https://doi.org/10.1016/j.engstruct.2021.112305.
  69. Yang, F., Veljkovic, M. and Liu, Y. (2020), "Ductile damage model calibration for high-strength structural steels", Constr. Build Mater., 263, 120632. https://doi.org/10.1016/j.conbuildmat.2020.120632.
  70. Yang, F., Veljkovic, M. and Liu, Y. (2021b), "Fracture simulation of partially threaded bolts under tensile loading", Eng. Struct., 226, 111373. https://doi.org/10.1016/j.engstruct.2020.111373.
  71. Yuan, H.X., Hu, S., Du, X.X., Yang, L., Cheng, X.Y. and Theofanous, M. (2019), "Experimental behaviour of stainless steel bolted T-stub connections under monotonic loading", J. Constr. Steel Res., 152, 213-224. https://doi.org/10.1016/j.jcsr.2018.02.021.