• Title/Summary/Keyword: Fracture network analysis

Search Result 66, Processing Time 0.032 seconds

Numerical Analysis of Flow Interference at Discontinuity Junction of fracture Network (단열교차점에서 유체간섭에 관한 수치적 고찰)

  • 박영진;이강근;이승구
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.111-115
    • /
    • 1997
  • Discrete fracture model has become one of the alternatives for the classical continuum model to simulate the irregular aspects of the fluid flow and the solute transport in fractured rocks. It is based on the assumptions that the discharge in a single fracture is proportional to the cube of the aperture and the fractured rock can be represented by the statistical assemblage of such single fractures. This study is intended to evaluate the effect of the fracture junction on the cubic law. Numerical solution of flow in junction system was obtained by using the Boundary-Fitted Coordinate System (BFCS) method. Results with different intersection angles in crossing fractures show that the geometry of the junction affects the discharge pattern under the same simulation conditions. Therefore, strict numerical and experimental examinations on this subject are required.

  • PDF

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.

Evaluation of High-Viscosity Grouting Injection Perfomance for Reinforcement of Rock Joint in Deep -Depth Tunnels (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 주입 성능 평가)

  • Inkook Yoon;Junho Moon;Younguk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.15-19
    • /
    • 2024
  • This study aimed to develop high-efficiency grouting techniques under deep-depth conditions by experimentally verifying the applicability of various injection materials. Particle size analysis and injection model experiments were conducted with Ordinary Portland Cement (OPC) and Micro Cement (MC) to evaluate the injection performance of each material. Using Barton's Cubic Network theory, the rock fracture spacing was calculated for domestic deep-depth standards, specifically below 40 meters underground. The analysis of particle size passability under selected conditions showed that MC could pass through the rock fracture gaps, while OPC could not. According to the results of the injection model experiments using experimental devices and area calculation software, OPC failed in injection due to its larger particle size, whereas MC was capable of injection even under high-viscosity conditions. Based on these findings, the study quantitatively and visually derived the applicability of grouting materials under deep-depth conditions, and high-viscosity MC material is expected to be effective for waterproofing enhancement in deep-depth rock fracture surfaces.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area (단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예)

  • Park, Chae-Eun;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.615-627
    • /
    • 2021
  • The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

Development of Internet-based Cooperative System for Integrity Evaluation of Reactor Pressure Vessel (원자로 압력용기의 건전성평가를 위한 인터넷기반 협업시스템의 개발)

  • Kim, Jong-Choon;Choi, Jae-Boong;Kim, Young-Jin;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.166-171
    • /
    • 2004
  • Since early 1950's fracture mechanics has brought significant impact on structural integrity assessment in a wide range of industries such as power, transportation, civil and petrochemical industries, especially in nuclear power plant industries. For the last two decades, significant efforts have been devoted in developing defect assessment procedures, from which various fitness-for-purpose or fitness-for-service codes have been developed. From another aspect, recent advances in IT (Information Technologies) bring rapid changes in various engineering fields. IT enables people to share information through network and thus provides concurrent working environment without limitations of working places. For this reason, a network system based on internet or intranet bas been appeared in various fields of business. Evaluating the integrity of structures is one of the most critical issues in nuclear industry. In order to evaluate the integrity of structures, a complicated and collaborative procedure is required including regular in-service inspection, fracture mechanics analysis, etc. And thus, experts in different fields have to cooperate to resolve the integrity problem. In this paper, an internet-based cooperative system for integrity evaluation system which adapts IT into a structural integrity evaluation procedure for reactor pressure vessel is introduced. The proposed system uses Virtual Reality (VR) technique, Virtual Network Computing (VNC) and agent programs. This system is able to support 3-dimensional virtual reality environment and to provide experts to cooperate by accessing related data through internet.

  • PDF

Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

  • 여인욱;이강근;지성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.51-54
    • /
    • 2003
  • Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Base(B on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  • PDF

Effects of Joint Density and Size Distribution on Hydrogeologic Characteristics of the 2-D DFN System (절리의 빈도 및 길이분포가 이차원 DFN 시스템의 수리지질학적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi;Lee, Dahye
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The effects of joint density and size distribution on the hydrogeologic characteristics of jointed rock masses are addressed through numerical experiments based on the 2-D DFN (discrete fracture network) fluid flow analysis. Using two joint sets, a total of 51 2-D joint network system were generated with various joint density and size distribution. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$, and total of 612 $20m{\times}20m$ DFN blocks were prepared to calculate the directional block conductivity. Also, the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated joint network system were determined. The directional block conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the increase of joint density or size distribution. However, the anisotropy of block hydraulic conductivity increases with the increase of density discrepancy between the joint sets, and the chance for the equivalent continuum behavior were found to decrease. The smaller the intersection angle of the two joint sets, the more the equivalent continuum behavior were affected by the change of joint density and size distribution. Even though the intersection angle is small enough that it is difficult to have equivalent continuum behavior, the chance for anisotropic equivalent continuum behavior increases as joint density or size distribution increases.

Geometric Analysis of Fracture System and Suggestion of a Modified RMR on Volcanic Rocks in the Vicinity of Ilgwang Fault (일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시)

  • Chang, Tae-Woo;Lee, Hyeon-Woo;Chae, Byung-Gon;Seo, Yong-Seok;Cho, Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.483-494
    • /
    • 2007
  • The properties of fracture system on road-cut slopes along the Busan-Ulsan express way under construction are investigated and analyzed. Fracture spacing distributions show log-normal form with extension fractures and negative exponential form with shear fractures. Straight line segments in log-log plots of cumulative fracture length indicate a power-law scaling with exponents of -1.13 in site 1, -1.01 in site 2 and -1.52 in site 3. It is likely that the stability and strength of rock mass are the lowest in site 1 as judged from the analyses of spacing, density and inter-section of fractures in three sites. In contrast, the highest efficiency of the fracture network for conducting fluid flow is seen in site 3 where the largest cluster occupies 73% through the window map. Based on the field survey data, this study modified weighting values of the RMR system using a multiple regression analysis method. The analysis result suggests a modified weighting values of the RMR parameters as follows; 18 for the intact strength of rock; 61 for RQD; 2 for spacing of discontinuities; 2 for the condition of discontinuities; and 17 for ground water.

Multiphase flow analysis in rock fractures with dynamic MMIP model

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.32-35
    • /
    • 2002
  • In order to characterize the migration of DNAPL in rock fractures, the dynamic macromodified invasion percolation (DMMIP) model, that is able to reflect the viscous force of groundwater in a fracture network, is suggested. DMMIP simulations are verified against the laboratory expenments, which shows a good qualitative and quantitative agreement.

  • PDF