• Title/Summary/Keyword: Fracture model

Search Result 1,282, Processing Time 0.028 seconds

A Numerical Study on Dispersion of Inert Particles in a Rough Single Fracture (거친 균열 암반에서의 용질 입자 확산에 대한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.79-87
    • /
    • 2006
  • This paper presents the numerical model developed to simulate the solute transport in rough and smooth single fractures. The roughness of these fractures is represented by using the fractal surface method. In this study, the 3D transport model, which is based on the random walk technique, is used to simulate the dispersion process of a solute which is represented by numerical particles. As the simulation results, it can be observed that the dispersion of solute in the fracture is significantly affected by the fracture roughness and particle size.

  • PDF

Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

  • Nam, Hyun-Suk;Kim, Ji-Soo;Ryu, Ho-Wan;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1252-1263
    • /
    • 2016
  • This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

Nonlinear Fracture Analysis of Concrete Structures Based on Stress-Strain Relation (응력(應力)-변형도관계(變形度關係)를 이용(利用)한 콘크리트 구조(構造)의 비선형파괴해석(非線型破壞解析))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.1-11
    • /
    • 1984
  • Developed is a nonlinear fracture theory which can model the complex fracture behavior of concrete. This theory is based on the nonlinear behavior due to progressive microcracking and strain-softening in the fracture process zone of concrete cracks. The simplified realistic fracture model which preserves the same fracture energy for the different fracture process zone widths is also derived. By modeling fracture through stress-strain behavior, the effect of compressive stresses parallel to the crack plane can be easily taken into account. The comparisons of the present theory with valuable fracture test data available in the literature show good agreements, and the existing linear theory exhibits in many cases large deviations from the actual test results. A simple approximate formula for the fracture energy of concrete which should, be necessary for the fracture analysis of concrete structures is derived. Finally, the application of fracture theory to reinforced concrete and the necessity of further research are discussed.

  • PDF

Cost-Effectiveness of Denosumab for Post-Menopausal Osteoporosis in South Korea (폐경기 골다공증 환자에서 데노수맙 사용에 대한 비용-효과 분석)

  • Bae, Green;Kwon, Hye-Young
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2018
  • Background: In South Korea, 22.3% of women ${\geq}50years$ of age and 37% of women ${\geq}70years$ of age visit the doctor to obtain treatment for osteoporosis. According to the analysis of the National Health Insurance Services claim data between 2008 and 2012, the number and incidence of hip and vertebral fractures increased during the same period. Denosumab, a newly marketed medicine in Korea, is the first RANK inhibitor. Methods: A cost-utility analysis was conducted from a societal perspective to prove the superiority of denosumab to alendronate. A Markov cohort model was used to investigate the cost-effectiveness of denosumab. A 6-month cycle length was used in the model, and all patients were individually followed up through the model, from their age at treatment initiation to their time of death or until 100 years of age. The model consisted of eight health states: well; hip fracture; vertebral fracture; wrist fracture; other osteoporotic fracture; post-hip fracture; post-vertebral fracture; and dead. All patients began in the well-health state. In this model, 5% discounted rate, two-year maximum offset time, and persistence were adopted. Results: The total lifetime costs for alendronate and denosumab were USD 5,587 and USD 6,534, respectively. The incremental cost-effectiveness ratio (ICER) for denosumab versus alendronate was USD 20,600/QALY. Given the ICER threshold in Korea, the results indicated that denosumab was remarkably superior to alendronate. Conclusion: Denosumab is a cost-effective alternative to the oral anti-osteoporotic treatment, alendronate, in South Korea.

Hydraulic fracture initiation pressure of anisotropic shale gas reservoirs

  • Zhu, Haiyan;Guo, Jianchun;Zhao, Xing;Lu, Qianli;Luo, Bo;Feng, Yong-Cun
    • Geomechanics and Engineering
    • /
    • v.7 no.4
    • /
    • pp.403-430
    • /
    • 2014
  • Shale gas formations exhibit strong mechanical and strength anisotropies. Thus, it is necessary to study the effect of anisotropy on the hydraulic fracture initiation pressure. The calculation model for the in-situ stress of the bedding formation is improved according to the effective stress theory. An analytical model of the stresses around wellbore in shale gas reservoirs, in consideration of stratum dip direction, dip angle, and in-situ stress azimuth, has been built. Besides, this work established a calculation model for the stress around the perforation holes. In combination with the tensile failure criterion, a prediction model for the hydraulic fracture initiation pressure in the shale gas reservoirs is put forward. The error between the prediction result and the measured value for the shale gas reservoir in the southern Sichuan Province is only 3.5%. Specifically, effects of factors including elasticity modulus, Poisson's ratio, in-situ stress ratio, tensile strength, perforation angle (the angle between perforation direction and the maximum principal stress) of anisotropic formations on hydraulic fracture initiation pressure have been investigated. The perforation angle has the largest effect on the fracture initiation pressure, followed by the in-situ stress ratio, ratio of tensile strength to pore pressure, and the anisotropy ratio of elasticity moduli as the last. The effect of the anisotropy ratio of the Poisson's ratio on the fracture initiation pressure can be ignored. This study provides a reference for the hydraulic fracturing design in shale gas wells.

A Study on the Fracture Resistance at the Crack Tip in Dual Phase Steel (복합조직강 의 균열선단 에서의 파괴저항 에 관한 연구)

  • 김정규;오재민;김형채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.564-571
    • /
    • 1985
  • The estimation of fracture toughness in inhomogeneous material is still insufficient because it is difficult to get information of fracture initiation at the crack tip. Therefore, martensite-ferrite dual phase steel was prepared for a model material and micro-fracture behavior was investigated in the region of pre-fatigue crack in order to understand the characteristic of fracture resistance in inhomogeneous materials. In the case of severely inhomogeneous state, micro-fracture appearance is not distributed homogenously so that the estimation of fracture toughness is hardly possible. On the other hand when the grain size is refined or the strength of martensite is lowered, micro-fracture appearance is distributed homogenously and fracture toughness remarkably increases.

A Model Estimating the Propagation Behavior of through cracks in Aluminum alloy A5083-O for LNG Tank (LNG탱크용 알루미늄합금 A5083-O의 관통균열 전파거동 예측 모델)

  • 김영식;조상명;김종호
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • The leak before break(LBB) concept is generalized on the design of LNG tanks, pressure vessels and nuclear reactor in that any leakage of containment, in whatever amount, will not result in catastropic failure. For this purpose it is necessary to determine the surface crack shape, the opening displacement and the risk of catastropic brittle fracture when it becomes a through crack. In this study the crack propagation behavior of surface flaws and the crack opening displacement of through cracks under combined membrane and bending stresses were investigated with fatigue tests and fracture toughness test of aluminium alloy A5083-O. And fracture mechanics analysis of the crack opening displacement of through cracks were made in order to develop a new model expressing the behaviors of COD under combined membrane and bending stresses.

  • PDF

Finite Element Regularization of Progressive Cracks in Concrete (콘크리트 균열진행의 유한요소 정규화)

  • Song, H.W.;Byun, K.J.;Lee, J.Y.;Suh, C.;Shim, B.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.279-284
    • /
    • 1994
  • Fracture mechanics does work for concrete, provided that one used a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to the toughness induced by the microcracking, so that the bridging is the dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrck with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with lenear tension-softening curve for the analyses of crack growth in concrete Finite element technique is shown for inplementation of the model.

  • PDF

Simulation of Plastic Collapsing Load and Deformation Behaviours(I) (소성 붕괴하중 및 변형거동 해석(1))

  • 김영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.

Crack Retardation byt Load Reduction During Fatigue Crack Propagation (피로균열전파 동안 하중감소에 의한 균열지연)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Ahn, Seok-Hwan;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2004-2010
    • /
    • 2003
  • Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference. between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction.