• Title/Summary/Keyword: Fracture Test

Search Result 2,765, Processing Time 0.032 seconds

The Mixed Mode Fracture Using Concrete Disk (콘크리트 디스크를 이용한 혼합모드 파괴)

  • 진치섭;김희성;정진호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.63-69
    • /
    • 2000
  • This study investigates a new method of using a concrete disk to calculate stress intensity factor (SIF) for mixed mode cases. The results indicate that the disk method is more accurate than three point bending test (TPB) in obtaining correct SIF values for mixed mode fracture propagation. Stress intensity factors $K_{I}$ and $K_{II}$ are calculated using a center notched disk subjected to splitting load. The notch angle is calculated by finite element (FEM). Fracture toughness $K_\textsc{k}$ of the concrete is obtained from the load intensities at the initiation of crack propagation. According to the finite element analysis(FEA) and disk test, the results show that mode I and mixed mode cracks propagate toward the directions of crack face and loading point, respectively. The results from FEA with maximum stress theory compare well with the experimental date. Unlike TPB method where an accurate fracture toughness value is difficult to obtain due to the irregular shape of load deflection curve and delayed final crack propagation (following slow stable cracking). fracture toughness value is easily measured in the disk test from the crack initial load. Therefore, it is safe to conclude that disk method is more advantageous than TPB method in analyzing combined mode fracture problems.

A Study on the Weld Part Fracture Toughness of Austenite Type Stainless Steel for Cryogenic Liquid Nitrogen Storage Tank (초저온 액화질소 저장탱크 오스트나이트계 스테인리스강의 용접부의 파괴인성 연구)

  • Kim, Young-Deuk;Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae;Bae, Won-Byoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.802-808
    • /
    • 2011
  • One of the important mechanical properties of cryogenic temperature structure material is fracture toughness. Research on normalization of fracture toughness test method is becoming very important issue with development of cryogenic structural elements. Specially, mechanical properties estimation by each micro-structure of welding department is important because it can cause unstable fracture when use under cryogenic environment in case of welding department. In this study, fracture toughness estimation test was carried out to unloading compliance method and sensitization heat-tread minimized test specimen at liquid nitrogen (77K), liquid helium (4K), 293K temperature to STS-316L base metal and weld metal.

Fracture Characteristics of Concrete at Early Ages

  • Lee, Yun;Kim, Jin-Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.191-198
    • /
    • 2006
  • The objective of this study is to examine fracture characteristics of concrete at early ages, i.g. critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of effective-elastic crack model and cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By experimenting with various strengths and ages, load-crack mouth opening curves were obtained, and the results were analyzed by linear elastic fracture mechanics and FEM(finite element method). The results from the test and analysis showed that critical stress intensity factor and facture energy increased while critical crack-tip opening displacement decreased with concrete aging from 1 day to 28 days. Four parameters of bilinear softening curve from 1 day to 28 days were obtained from a numerical analysis. The obtained fracture parameters and bilinear softening curves at early ages from this study are to be used as a fracture criterion and an input data for the finite element analysis of concrete at early ages.

Fracture Toughness Embrittlement by Hydride in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 수화물에 의한 파괴인성 취화에 관한 연구)

  • Oh, Dong-Joan;Ahn, Sang-Bok;Park, Soon-Sam;An, Chang-Yun;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.93-98
    • /
    • 2000
  • Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of fracture toughness by hydride embrittlement in CANDU pressure tube which can result from the absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness test were performed from room temperature to $300^{\circ}C$ using three different specimens which have an AR (As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test temperature became higher they were decreased linearly. While, at room temperature, the hydrogenbsorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture toughness, the fracture characteristics became ductile such as AR specimen at high temperatures. Through the observation of fracture surface using SEM, it was found that the stress state of mixed mode could be related to the fissure which was believed to decrease the global fracture toughness.

  • PDF

Guidelines for Joint Depth Determination and Timing of Contraction Joint Sawcutting for JCP Analyzed with Fracture Mechanics

  • Yang, Sung-Chul;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.145-150
    • /
    • 2006
  • An experiment with the objective of providing guidelines for joint depth determination and timing of contraction joint sawcutting to avert uncontrolled cement concrete pavement cracking has been conducted. Theoretical analysis and laboratory tests were performed to help in understanding and analyzing the field observation. Using two-dimensional elastic fracture mechanics, the influence of several parameters on crack propagation was delineated by a parametric study, involving initial notch ratio, joint spacing, Young's modulus and thermal expansion coefficient of concrete, temperature gradient, and modulus of subgrade reaction. Bimaterials made of rock plus cement mortar and rock plus polymer mortar were applied to the concrete in a field test section, and they were subjected to fracture tests. These tests have shown that fracture mechanics is a powerful tool not only in judging the quality of the jointed cement concrete pavement but also in providing a criterion for crack propagation and delamination. Based on fracture mechanics, a method is proposed to determine the joint depth, sawcut timing, and spacing of the jointed cement concrete pavement. This method has successfully been applied to a test section in Seohaean expressway. This study also summarizes the research results obtained from a field test for jointed plain concrete pavement, which was also carried out on the Seohaean expressway.

A Study on the Impact Fracture Behavior of Side Plate for G/T 35ton Class FRP Vessel (35톤급 FRP선박 외판자재의 충격파괴거동에 관한 연구)

  • Lee, Jin-Jeong
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • no.7 s.25
    • /
    • pp.64-76
    • /
    • 2008
  • This paper describes the failure mechanism and Charpy impact test of Fiber glass Reinforced Plastic composites which it was actually used for side plate of vessel. There are two examinations. The examination I, the specimens which it given temperature range $-25^{\circ}C$-$50^{\circ}C$ and with different initial notch length did impact test and then it compared impact energy(Uc) and impact fracture toughness(GIC). The examination II, the specimens which it putted into fresh water and sea water for scheduled hours did impact test and it compared impact energy(Uc) and impact fracture toughness(GIC). From examination I, it showed that impact energy(Uc) and impact fracture toughness(GIC) were peak at ambient temperature and decrease as temperature reduced. Fracture toughness(GIC) showed increase as initial notch length reduced. From examination II, impact energy(Uc) and impact fracture toughness(GIC) tended to increase which specimens putted in fresh water compared with sea water and maximum tolerance rate tend to decrease as permeation hours will be long.

  • PDF

Evaluation of Fracture Toughness by J-A$_2$ Method Considering Size Effect (시편크기의 영향을 고려한 J-A$_2$ 방법에 의한 파괴인성 평가)

  • 이정윤;김영종;김용환;김재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.153-163
    • /
    • 2000
  • The size effect on fracture toughness was investigated by introducing $J-A_2$ theory. For this application,small size specimens were chosen to establish $J-A_2$ assessment curve with FEM analysis. Two-dimensional FEM analysis was conducted with plane strain model using ABAQUS by domain integral method to calculate both crack tip stress and fracture toughness which were used to establish $J-A_2$ curve. The assessment curve predicted the fracture toughness of large specimens very well when compared to the test values. The results showed good prediction for deep crack specimen, though there were acceptable deviations in shallow cracked specimens, presumably caused by constraint effect. When the curve applied to reactor vessel in order to predict end of life fracture toughness with assumption of on-power pressure test condition, it provided the reasonable pressure compared to the existing design value. Better predictions would be possible if more test data were available.

  • PDF

Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test (3점 굴곡 실험에서 하중 속도 변화에 따른 단결정 실리콘 칩의 파괴강도 측정)

  • Lee, Dong-Ki;Lee, Seong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

A comparative evaluation of fracture resistance of endodontically treated teeth restored with different post core systems - an in-vitro study

  • Makade, Chetana S.;Meshram, Ganesh K.;Warhadpande, Manjusha;Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.90-95
    • /
    • 2011
  • PURPOSE. To compare the fracture resistance and the mode of failure of endodontically treated teeth restored with different post-core systems. MATERIALS AND METHODS. Root canal treatment was performed on 40 maxillary incisors and the samples were divided into four groups of 10 each. For three experimental groups post space preparation was done and teeth were restored with cast post-core (Group B), stainless steel post with composite core (Group C) and glass fiber post with composite core using adhesive resin cement (Group D). Control group (A) samples were selected with intact coronal structure. All the samples were prepared for ideal abutment preparation. All the samples were subjected to a load of 0.5 mm/min at $130^{circ}$.until fracture occurred using the universal testing machine. The fracture resistance was measured and the data were analyzed statistically. The fracture above the embedded resin was considered to be favorable and the fracture below the level was considered as unfavorable. The statistical analysis of fracture resistance between different groups was carried out with t-test. For the mode of failure the statistical analysis was carried out by Kruskal-Wallis test and Chi-Square test. RESULTS. For experimental group Vs control group the fracture resistance values showed significant differences (P<.05). For the mode of failure the chi-square value is 16.1610, which means highly significant (P=.0009) statistically. CONCLUSION. Endodontically treated teeth without post core system showed the least fracture resistance demonstrating the need to reinforce the tooth. Stainless steel post with composite core showed the highest fracture resistance among all the experimental groups. Teeth restored with the Glass fiber post showed the most favorable fractures making them more amenable to the re-treatment.