• Title/Summary/Keyword: Fracture Test

Search Result 2,765, Processing Time 0.027 seconds

The characteristics of mild head injuries in preschool-age children fall: a retrospective observational study (학령전기 소아에서 추락으로 인한 경증 두부손상의 특징에 대한 후향적 관찰 연구)

  • Sung, Min Suk;Lee, Ji Sook;Jeon, Woochan;Park, Junseok;Kim, Kyung Hwan;Shin, Dongwun;Kim, Hoon;Park, Joon Min;Kim, Hyunjong
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.5
    • /
    • pp.423-429
    • /
    • 2018
  • Objective: Falling is a common cause of head injury in preschool aged children. We investigated the characteristics of mild head injuries caused by falling and the association between body weight and occurrence of traumatic brain injuries (TBI). Methods: This retrospective observational study was conducted on head-injured preschool-aged children that visited the emergency department from January 2012 to December 2015. Characteristics such as age, sex, weight, free fall height, floor type, and presence of TBI, as defined as cerebral hemorrhage or skull fracture, were investigated. We calculated body weight percentiles by calibrating age and weight and categorized them into four quartile ranges. We grouped all included cases into two groups according to the presence of TBI. The characteristics of the two groups were compared by using chi-square test, and the association with TBI was investigated by using binomial logistic regression. Results: A total of 701 children were included, and TBI was observed in 95 children. Children with TBI were younger. The proportion of children with TBI was higher in the third and fourth quartiles of the body weight group as well as according to soft floor and fall from high height (${\geq}1m$). The odds of soft floor being associated with TBI was higher than the odds for hard floor (odds ratio, 2.734; 95% confidence interval [CI], 1.597-4.680). The odds of high height (${\geq}1m$) being associated with TBI was higher than that for low height (odds ratio, 2.306; 95% CI, 1.155-4.601), and the odds ratio for the weight percentile group was 1.228 (95% CI, 1.005-1.499). Conclusion: Prevalence of TBI after falling in preschool-aged children might be associated with high fall-height and body weight quartiles.

Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete (후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성)

  • Kim, Dong-Hui;Jang, Seok-Joon;Kim, Sun-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.40-47
    • /
    • 2021
  • This study investigates the influence of hooked-end steel fiber volume fraction and aspect ratio on the mechanical properties, such as compressive and flexural performance, of concrete with specified compressive strength of 30MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were selected. The flexural tests of steel fiber reinforced concrete (SFRC) prismatic specimens were conducted according to EN 14651. The compressive performance of SFRC with different volume fractions (0.25, 0.50 and 0.75%) were evaluated through standard compressive strength test method (KS F 2405). Experimental results indicated that the flexural strength, flexural toughness, fracture energy of concrete were improved as steel fiber volume fraction increases but there is no unique relationship between steel fiber volume fraction and compressive performance. The flexural and compressive properties of concrete incorporating hooked-end steel fiber with aspect ratio of 64 and 80 are a little better than those of SFRC with aspect ratio of 67. For each SFRC mixture used in the study, the residual flexural tensile strength ratio defined in Model Code 2010 was more than the limit value to be able to substitute rebar or welded mesh in structural members with the fiber reinforcement.

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

  • Arcila, Laura Viviana Calvache;Ramos, Nathalia de Carvalho;Campos, Tiago Moreira Bastos;Dapieve, Kiara Serafini;Valandro, Luiz Felipe;de Melo, Renata Marques;Bottino, Marco Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.385-395
    • /
    • 2021
  • PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Crossplot Interpretation of Electrical Resistivity and Seismic Velocity Values for Mapping Weak Zones in Levees (제방의 취약구간 파악을 위한 전기비저항과 탄성파속도의 교차출력 해석)

  • Cho, Kyoung-Seo;Kim, Jeong-In;Kim, Jong-Woo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.507-522
    • /
    • 2021
  • Specific survey objectives often cannot be met using only one geophysical method, as each method's results are influenced by the specific physical properties of subsurface materials. In particular, areas susceptible to geological hazards require investigation using more than one method in order to reduce risks to life and property. Instead of analyzing the results from each method separately, this work develops a four-quadrant criterion for classifying areas of levees as safe or weak. The assessment is based on statistically determined thresholds of seismic velocity (P-wave velocity from seismic refraction and S-wave velocity from multichannel analysis of surface waves) and electrical resistivity. Thresholds are determined by subtracting the standard deviation from the mean during performance testing of this correlation technique applied to model data of four horizontal and inclined fracture zones. Compared with results from the crossplot of resistivity and P-wave velocity, crossplot analysis using resistivity and S-wave velocity data provides more reliable information on the soil type, ground stiffness, and lithological characteristics of the levee system. A loose and sandy zone (represented by low S-wave velocity and high resistivity) falling within the second quadrant is interpreted to be a weak zone. This interpretation is well supported by the N values from standard penetrating test for the central core.

Flexural Reinforcement of Timber Beams Using Carbon Fiber Plates (탄소섬유판을 사용한 목재 보의 휨보강)

  • Choi, Jin-Chul;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.238-246
    • /
    • 2022
  • This paper summarizes the development and evaluation of the reinforcement details of CFRP plates to improve the bending performance of wooden beams. In this study, the reinforcing technology using high-strength bolts for the end of beam were developed as reinforcement details for reinforcing wooden beams with CFRP plates by EBM method. In order to evaluate the bending performance, a bending test was conducted for the specimens with details of reinforcement such as the EBM method and the NSM method. From the experimental results, the EBM specimens without end restraints had both the CFRP plate attachment failure and the splitting failure of the wood. In the load-displacement curve, the non-reinforced specimens exhibited linear elastic behavior and then brittle fracture after the maximum load. The maximum load of the specimens reinforced by the EBM method increased by 31.5~63.0% compared to the non-reinforced specimens, and the maximum load according to the end restraints of the high-strength bolts increased by 24.0%. Based on the reinforcement amount of the same CFRP plate, EBM reinforcement was 2.67 times larger in maximum load increase rate than NSM reinforcement.

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

A Study on the Stability Control Method of Soft and Polluted Silt Soils (연약한 실트지반과 오염된 실트지반의 안정관리 방법에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.5-16
    • /
    • 2008
  • This study investigated the existing theoretical backgrounds in order to examine the stability control method of lateral flow caused by the Plasticity of soils when unsymmetrical surcharge works on polluted soils and then compared and analyzed the results measured through model tests. Ultimate bearing power of ML and $ML_{p1}$ and $ML_{p2}$ obtained at surcharge(q)-settlement$(S_v)$ curve showed similar trends to ultimate bearing power obtained from control chart of deflection $(S_v-Y_m)$ by Tominaga.Hashimoto, that of $S_v-(Y_m/S_v)$ by Matsuo.Kawamura and that of $(q/Y_m)-q$ by Shibata.Sekiguchi and so it is considered that it has no problem in actual applicability. ${S_v-(Y_m/S_v)}$ of control chart of $ML_{p1}$ by Matsuo.Kawamura showed smaller value than ultimate bearing capacity value from surcharge-settlement curve $(q-S_v)$. Expression of ML of fracture baseline at stability control charge by Matsuo Kawamura is ${S_v=3.21exp}\{-0.48(Y_m/S_v)\}$ and expression of $ML_{p1}$ is ${S_v=3.26exp}\{-0.96(Y_m/S_v)\}$ and expression of $ML_{p2}$ is ${S_v=6.33exp}\{-0.45(Y_m/S_v)\}$.

Multidetector Computed Tomography in Patients with Femoral Neck Fracture for Assessing Osteoporosis: Comparison with Dual Energy X-Ray Absorptiometry (대퇴골 경부 골절 환자에서 골다공증 평가를 위한 다중검출 CT의 이용: 이중에너지 X-선 흡수계측법과의 비교)

  • Hyo Jeong Lee;Ji Young Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.173-181
    • /
    • 2021
  • Purpose To evaluate the ability of the Hounsfield unit (HU) measurement of the femoral neck during multidetector computed tomography (MDCT) for assessing osteoporosis compared with dual-energy X-ray absorptiometry (DXA). Materials and Methods Forty-two patients with femoral neck fractures who underwent MDCT and DXA from July to December 2016 were included in this study. HU measurements were made of the cancellous portions of the normal contralateral femoral neck on MDCT. Bone mineral density (BMD) and T-scores were obtained at the femur DXA. Correlations of HU values with BMD and T-scores were analyzed using Spearman's correlation test. Results The mean BMD and T-score of the femoral neck were 0.650 g/cm2 and -2.4, respectively. The mean HU values for the normal, osteopenia, and osteoporosis groups were 131.9, 98.9, and 41.3, respectively. HU values at the femoral neck were positively correlated with BMD (r2 = 0.670; p < 0.001) and T-scores (r2 = 0.676; p < 0.001). Conclusion The HU values of the femoral neck on MDCT are significantly correlated with BMD and T-scores of femur DXA. The HU values may serve as a diagnostic tool for the screening of regional bone quality when MDCT is performed for other reasons.