• Title/Summary/Keyword: Fracture Strain

Search Result 1,027, Processing Time 0.026 seconds

Discussions on the September 2016 Gyeongju Earthquakes (2016년 9월 경주지진 소고(小考))

  • Lee, Kiehwa
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • A sequence of earthquakes with the main shock $M_L$ 5.8 occurred on September 12 2016 in the Gyeongju area. The main shock was the largest earthquakes in the southern part of the Korean peninsula since the instrumental seismic observation began in the peninsula in 1905 and clearly demonstrated that the Yangsan fault is seismically active. The mean focal depth of the foreshock, main shock, and aftershock of the Gyeongju earthquakes estimated by the crustal model of single layer of the Korean peninsula without the Conrad discontinuity turns out to be 12.9 km, which is 2.8 km lower than that estimated based on the IASP91 reference model with the Conrad discontinuity. The distribution of the historical and instrumental earthquakes in the Gyeongju area indicates that the Yangsan fault system comprising the main Yangsan fault and its subsidiary faults is a large fracture zone. The epicenters of the Gyeongju earthquakes show that a few faults of the Yangsan fault system are involved in the release of the strain energy accumulated in the area. That the major earthquakes of Gyeongju earthquakes occurred not on the surface but below 10 km depth suggests the necessity of the study of the distribution of deep active faults of the Yangsan fault system. The magnitude of maximum earthquake of the Gyeongju area estimated based on the earthquake data of the area turns out to be 7.3. The recurrence intervals of the earthquakes over magnitudes 5.0, 6.0 and 7.0 based on the earthquake data since 1978, which is the most complete data in the peninsula, are estimated as 80, 670, and 5,900 years, respectively. The September 2016 Gyeongju earthquakes are basically intraplate earthquakes not related to the Great East Japan earthquake of March 11 2011 which is interplate earthquake.

Relationship between Tensile Characteristics and Fatigue Failure by Folding or Bending in Cu Foil on Flexible Substrate (유연성 기판에 사용되는 전해 동박의 절곡 및 굴곡 피로 파괴와 인장 특성과의 관계)

  • Kim, Byoung-Joon;Jeong, Myeong-Hyeok;Hwang, Sung-Hwan;Lee, Ho-Young;Lee, Sung-Won;Cbun, Ki-Do;Park, Young-Bae;Joo, Young-Cbang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2011
  • Folding endurance, bending fatigue and monotonic tensile tests of 4 kinds of Cu foil on flexible substrate was performed to investigate the relationship between folding or bending endurances and tensile characteristics. The repeated 5.3 or 2.0% strain was applied to Cu foil in folding endurance test or bending fatigue test while monitoring the electrical resistance. Elastic modulus, yield strength, ultimate tensile strength, ductility, and toughness were obtained by monotonic tensile test on the same samples. The Cu foil with higher toughness and ductility showed higher reliabilities in folding or bending fatigue. However, elastic modulus and yield strength did not show any relationship with folding and bending reliability. This is because the failures of Cu foil by folding or bending fatigue were closely related to the fracture energy of metal.

Study on Characteristics of SCC and AE Signals for Weld HAZ of HT-60 Steel (HT-60강 용접부의 SCC및 AE신호특성에 관한 연구)

  • Na, Eui-Gyun;Yu, Hyo-Sun;Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In order to characterize the microscopic fracture behaviour of the weldment din stress corrosion cracking(SCC) phenomena, SCC and acoustic emission(AE) tests were carried out simultaneously and the correlation between mechanical paramenters obtained from SCC and AE tests was investigated. In the case of base metal, much more AE events were produced at -0.5V than at -0.8V because of the dissolution mechanism before the maximum load. Regardless of the applied voltages to the specimens, however, AE events decreased after the maximum load. In the case of weldment, lots of AE events with larger amplitude $range(40{\sim}100dB)$ were produced because of the singularities of weld HAZ in comparision to the base metal and post-weld heat-treated(PWHT) specimens. Numerous and larger cracks for the weldment were observed on the fractured surfaces by SEM examination. From these results, it was concluded that SCC for the weldment appeared most severely in synthetic seawater. Weld HAZ was softened by PWHT which also contributed to the reduced susceptibility to corrosive environment in comparison to the weldment.

  • PDF

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF

For white Hair Cover for Chemical Hair Dye Treated Hair Cosmetic Analysis (백모(白毛) 커버(cover)용 화학염모제 처리 모발의 미용학적 분석)

  • Oh, Jung-Sun;Park, Jang-Soon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.281-286
    • /
    • 2019
  • Appearance is a means of competitiveness for modern people, and one of the factors that harms the desires of modern people is white hair. For the modern man who needs to express beautiful appearance to others by covering white moth, we performed hair analysis after white moth hair dye treatment. The maximum modulus and tangential modulus according to the maximum load, maximum tensile strength, maximum elongation, breaking load, fracture strength, elongation at break, and evaluation interval between 1N-3N experimental group and control group of 1N-Respectively. Maximum load, maximum tensile strength, breaking load and breaking strength tended to be larger than those of the control group, while the maximum elongation and breaking elongation were the highest in the control group and the elongation decreased with the experimental group treatment. The maximum modulus and tangential modulus of the 1N-3N test group were higher than those of the control group at 0~0.15 and 0.15~2.5, respectively. Based on the study on the cosmetic changes of the hair before and after the treatment, it can be used as a basic data to select the correct oxidative hair dye product, the proper amount of application and the time to leave.

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

Experimental Study on Flexural Behavior of RC Beams Strengthened with Prestressed CFRP Plate (CFRP판으로 프리스트레싱 보강한 RC 보의 휨거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kim, Hyung-Jin;Woo, Sang-Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.301-310
    • /
    • 2006
  • Carbon fiber reinforced polymer (CRFP) materials are well suited to the rehabilitation of civil engineering structures due to their corrosion resistance, high strength to weight ratio and high stiffness to weight ratio. Their application in the field of the rehabilitation of concrete structures is increased due to the vast number of bridges and buildings in need of strengthening. However, RC members, strengthened with externally bonded CFRP plates, happened to collapse before reaching the expected design failure load. Therefore, it is necessary to develop the new strengthening method to overcome the problems of previous bonded strengthening method. This problems can be solved by prestressing the CFRP plate before bonding to the concrete. In this study, a total of 21 specimens of 3.3 m length were tested by the four point bending method after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with various prestress levels ranging from 0.4% to 0.8% of CFRP plate strain. All specimen with end anchorage failed by a plate fracture regardless of the prestress levels while the specimen without end anchorage failed by the separation of the plate from the beam due to premature debonding. The cracking loads was proportionally related to the prestress levels, but the maximum loads of specimens strengthened with prestressed CFRP plates were insignificantly affected by the prestress levels.