• Title/Summary/Keyword: Fractional-order derivative operator

Search Result 14, Processing Time 0.021 seconds

HADAMARD-TYPE FRACTIONAL CALCULUS

  • Anatoly A.Kilbas
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1191-1204
    • /
    • 2001
  • The paper is devoted to the study of fractional integration and differentiation on a finite interval [a, b] of the real axis in the frame of Hadamard setting. The constructions under consideration generalize the modified integration $\int_{a}^{x}(t/x)^{\mu}f(t)dt/t$ and the modified differentiation ${\delta}+{\mu}({\delta}=xD,D=d/dx)$ with real $\mu$, being taken n times. Conditions are given for such a Hadamard-type fractional integration operator to be bounded in the space $X^{p}_{c}$(a, b) of Lebesgue measurable functions f on $R_{+}=(0,{\infty})$ such that for c${\in}R=(-{\infty}{\infty})$, in particular in the space $L^{p}(0,{\infty})\;(1{\le}{\le}{\infty})$. The existence almost every where is established for the coorresponding Hadamard-type fractional derivative for a function g(x) such that $x^{p}$g(x) have $\delta$ derivatives up to order n-1 on [a, b] and ${\delta}^{n-1}[x^{\mu}$g(x)] is absolutely continuous on [a, b]. Semigroup and reciprocal properties for the above operators are proved.

  • PDF

POLYNOMIALLY DEMICOMPACT OPERATORS AND SPECTRAL THEORY FOR OPERATOR MATRICES INVOLVING DEMICOMPACTNESS CLASSES

  • Brahim, Fatma Ben;Jeribi, Aref;Krichen, Bilel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1351-1370
    • /
    • 2018
  • In the first part of this paper we show that, under some conditions, a polynomially demicompact operator can be demicompact. An example involving the Caputo fractional derivative of order ${\alpha}$ is provided. Furthermore, we give a refinement of the left and the right Weyl essential spectra of a closed linear operator involving the class of demicompact ones. In the second part of this work we provide some sufficient conditions on the inputs of a closable block operator matrix, with domain consisting of vectors which satisfy certain conditions, to ensure the demicompactness of its closure. Moreover, we apply the obtained results to determine the essential spectra of this operator.

IMPACT OF FRACTIONAL CONFORMABLE DERIVATIVES ON A(H1N1) INFECTION MODEL

  • Hind Ali Ahmad Eid;Mohammed N Alkord
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.597-620
    • /
    • 2024
  • In this study, the conformable fractional derivative(CFD) of order 𝝔 in conjunction with the LC operator of orderρ is used to develop the model of the transmission of the A(H1N1) influenza infection. A brand-new A(H1N1) influenza infection model is presented, with a population split into four different compartments. Fixed point theorems were used to prove the existence of the solutions and uniqueness of this model. The basic reproduction number R0 was determined. The least and most sensitive variables that could alter R0 were then determined using normalized forward sensitivity indices. Through numerical simulations carried out with the aid of the Adams-Moulton approach, the study also investigated the effects of numerous biological characteristics on the system. The findings demonstrated that if 𝝔 < 1 and ρ < 1 under the CFD, also the findings demonstrated that if 𝝔 = 1 and ρ = 1 under the CFD, the A(H1N1) influenza infection will not vanish.

QUALITATIVE ANALYSIS FOR FRACTIONAL-ORDER NONLOCAL INTEGRAL-MULTIPOINT SYSTEMS VIA A GENERALIZED HILFER OPERATOR

  • Mohammed N. Alkord;Sadikali L. Shaikh;Saleh S. Redhwan;Mohammed S. Abdo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.537-555
    • /
    • 2023
  • In this paper, we consider two types of fractional boundary value problems, one of them is an implicit type and the other will be an integro-differential type with nonlocal integral multi-point boundary conditions in the frame of generalized Hilfer fractional derivatives. The existence and uniqueness results are acquired by applying Krasnoselskii's and Banach's fixed point theorems. Some various numerical examples are provided to illustrate and validate our results. Moreover, we get some results in the literature as a special case of our current results.