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POLYNOMIALLY DEMICOMPACT OPERATORS AND

SPECTRAL THEORY FOR OPERATOR MATRICES

INVOLVING DEMICOMPACTNESS CLASSES

Fatma Ben Brahim, Aref Jeribi, and Bilel Krichen

Abstract. In the first part of this paper we show that, under some con-
ditions, a polynomially demicompact operator can be demicompact. An

example involving the Caputo fractional derivative of order α is provided.

Furthermore, we give a refinement of the left and the right Weyl essen-
tial spectra of a closed linear operator involving the class of demicompact

ones. In the second part of this work we provide some sufficient conditions
on the inputs of a closable block operator matrix, with domain consisting

of vectors which satisfy certain conditions, to ensure the demicompact-

ness of its closure. Moreover, we apply the obtained results to determine
the essential spectra of this operator.

1. Introduction

Let X and Y be two Banach spaces. The set of all closed densely defined
(resp. bounded) linear operators acting from X into Y is denoted by C(X,Y )
(resp. L(X,Y )). We denote by K(X,Y ) the subset of compact operators of
L(X,Y ). For T ∈ C(X,Y ), we use the following notations: α(T ) is the di-
mension of the kernel N (T ) and β(T ) is the codimension of the range R(T ) in
Y . The next sets of upper semi-Fredholm, lower semi-Fredholm, Fredholm and
semi-Fredholm operators from X into Y are, respectively, defined by:

Φ+(X,Y ) = {T ∈ C(X,Y ) such that α(T ) <∞ and R(T ) closed in Y },
Φ−(X,Y ) = {T ∈ C(X,Y ) such that β(T ) <∞ and R(T ) closed in Y },

Φ(X,Y ) := Φ−(X,Y ) ∩ Φ+(X,Y ),

and
Φ±(X,Y ) := Φ−(X,Y ) ∪ Φ+(X,Y ).

For T ∈ Φ±(X,Y ), the index is defined as i(T ) := α(T ) − β(T ). A complex
number λ is in Φ+T ,Φ−T ,Φ±T or ΦT if λ − T is in Φ+(X,Y ), Φ−(X,Y ),
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Φ±(X,Y ) or Φ(X,Y ), respectively. IfX = Y , then L(X,Y ), C(X,Y ), K(X,Y ),
Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y ) and Φ±(X,Y ) are replaced by L(X), C(X),
K(X), Φ(X), Φ+(X), Φ−(X) and Φ±(X), respectively. If T ∈ C(X), we denote
by ρ(T ) the resolvent set of T and by σ(T ) the spectrum of T . Let T ∈ C(X).
For x ∈ D(T ), the graph norm ‖ · ‖T of x is defined by ‖x‖T = ‖x‖+ ‖Tx‖. It
follows from the closedness of T that XT := (D(T ), ‖ · ‖T ) is a Banach space.
Clearly, for every x ∈ D(T ) we have ‖Tx‖ ≤ ‖x‖T , so that T ∈ L(XT , X). A

linear operator B is said to be T -defined if D(T ) ⊆ D(B). If the restriction B̂
of B to D(T ) is bounded from XT into X, we say that B is T -bounded.

Remark 1.1. Notice that if T ∈ C(X) and B is T -bounded, then we get the
obvious relations:{
α(T̂ ) = α(T ), β(T̂ ) = β(T ),R(T̂ ) = R(T ),

α(T̂ + B̂) = α(T +B), β(T̂ + B̂) = β(T +B), and R(T̂ + B̂) = R(T +B).

Hence, T ∈ Φ(X), (resp. Φ+(X),Φ−(X)) if, and only if, T̂ ∈ Φ(XT , X), (resp.
Φ+(XT , X), Φ−(XT , X)).

Definition 1.1. Let T ∈ L(X,Y ), where X and Y are two Banach spaces.
(i) T is said to have a left Fredholm inverse if there exist Tl ∈ L(Y,X) and

K ∈ K(X) such that TlT = IX −K. The operator Tl is called left Fredholm
inverse of T .

(ii) T is said to have a right Fredholm inverse if there exists Tr ∈ L(Y,X)
such that IY − TTr ∈ K(Y ). The operator Tr is called right Fredholm inverse
of T .

(iii) T is said to have a Fredholm inverse if there exists a map which is both
a left and a right Fredholm inverse of T .

Definition 1.2. Let T ∈ C(X), where X is a Banach space. T is said to have

a left Fredholm inverse (resp. right Fredholm inverse, Fredholm inverse) if T̂
has a left Fredholm inverse (resp. right Fredholm inverse, Fredholm inverse).

The sets of left and right Fredholm inverses are respectively defined by:

Φl(X) := {T ∈ C(X) such that T has a left Fredholm inverse}, and

Φr(X) := {T ∈ C(X) such that T has a right Fredholm inverse}.
A complex number λ is in ΦlT (X), ΦrT (X) or ΦT (X) if λ − T is in Φl(X),
Φr(X) or Φ(X), respectively.

Definition 1.3. Let X and Y be two Banach spaces and let F ∈ L(X,Y ).
The operator F is called:

(a) Fredholm perturbation if T + F ∈ Φ(X,Y ) whenever T ∈ Φ(X,Y ).
(b) Upper semi-Fredholm perturbation if T + F ∈ Φ+(X,Y ) whenever

T ∈ Φ+(X,Y ).
(c) Lower semi-Fredholm perturbation if T + F ∈ Φ−(X,Y ) whenever

T ∈ Φ−(X,Y ).
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The set of Fredholm, upper semi-Fredholm and lower semi-Fredholm per-
turbations are denoted by F(X,Y ),F+(X,Y ) and F−(X,Y ), respectively.

The concept of demicompactness appeared in the literature since 1966 in
order to discuss fixed points. It was introduced by W. V. Petryshyn [15] as
follows:

Definition 1.4. An operator T : D(T ) ⊆ X → X is said to be demicompact
if for every bounded sequence (xn)n in D(T ) such that xn − Txn converges in
X, there exists a convergent subsequence of (xn)n.

The family of demicompact operators on X is denoted by DC(X). It is clear
that the sum, the product of demicompact operators and the product of a
complex number by a demicompact operator are not necessarily demicompact.
W. V. Petryshyn [15] and W. Y. Akashi [1] used the class of demicompact op-
erators to obtain some results on Fredholm perturbation. In 2014, B. Krichen
[10], gave a generalization of this notion by introducing the class of relative
demicompact linear operator with respect to a given linear operator. Recently,
W. Chaker, A. Jeribi and B. Krichen [5, 6] continued this study to investi-
gate the essential spectra of densely defined linear operators. Moreover, they
established the relationship between demicompact operators and upper semi-
Fredholm and Fredholm ones.

The study of spectral theory of block operator matrices has been around for
many years. From the most important works on this subject, we quote [8, 18].
Let us consider the following operator matrix L0 acting on the Banach space
product X × Y

L0 =

(
A B
C D

)
.

In general, the operators occurring in L0 are unbounded and L0 need not to be
a closed nor a closable operator, even if its entries are closed. However, under
some conditions L0 is closable and its closure L can be determined.

In the theory of unbounded block operator matrices, the Frobenius-Schur
factorization is of vital importance in the study of the spectrum and the various
spectral theory. In [3], the authors showed that under some hypothesis, the
operator L0 is closable and they described its closure. In [13], N. Moalla,
M. Damak and A. Jeribi have described the essential spectra of the closure of
L0. But to determine the essential spectra of L, they must absolutely know
the essential spectrum of the entry A. In [4], the authors have generalized
these results and have described the essential spectrum of the closure of L0,
which is supposed satisfying some hypothesis. In fact, they have assumed that
D(A) ⊂ D(C) and the intersection of the domains of the operators B and D is
sufficiently large. Moreover, they have assumed that the domain of L0 is defined
by an additional relation of the form ΓXx = ΓY y between the two components
of its elements. In the same work, they have investigated the essential spectra
of L by only knowing the essential spectrum of A1 := A|D(A)∩N (ΓX).
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In this paper, we will study some demicompactness properties of the closure
of the operator matrix L0 under some hypotheses introduced in [4] and then we
will investigate its essential spectrum. More precisely, we are concerned with
the following essential spectra:

σe1(T ) := {λ ∈ C such that λ− T /∈ Φ+(X)} := C\Φ+T ,

σe2(T ) := {λ ∈ C such that λ− T /∈ Φ−(X)} := C\Φ−T ,
σe4(T ) := {λ ∈ C such that λ− T /∈ Φ(X)} := C\ΦT ,

σe5(T ) :=
⋂

K∈K(X)

σ(T +K),

σe7(T ) :=
⋂

K∈K(X)

σap(T +K),

σe8(T ) :=
⋂

K∈K(X)

σδ(T +K),

σewl(T ) :=
⋂

K∈K(X)

σl(T +K),

σewr(T ) :=
⋂

K∈K(X)

σr(T +K),

where,

σap(T ) := {λ ∈ C such that inf
x∈D(T );‖x‖=1

‖(λ− T )x‖ = 0},

σδ(T ) := {λ ∈ C such that λ− T is not surjective},
σl(T ) := {λ ∈ C such that λ− T /∈ Φl(X)} := C\ΦlT ,
σr(T ) := {λ ∈ C such that λ− T /∈ Φr(X)} := C\ΦrT .

This paper is organized in the following way. In Section 2, we recall some
definitions and results needed in the rest of the paper. In Section 3, we show
that under some conditions, a polynomially demicompact operator is demi-
compact and we give an example involving the Caputo fractional derivative of
order α. In Section 4, we give a fine description of the left and the right Weyl
essential spectra. In Section 5, we prove that under some conditions, µL is
demicompact and we give a necessary condition for which I − L is an upper
semi-Fredholm operator on a Banach space. In Section 6, we investigate the
essential spectra of the matrix operator L.

2. Preliminary results

We start this section by recalling some Fredholm results related with demi-
compact operators.

Theorem 2.1 ([5, 6]). Let X be a Banach space and let T ∈ C(X). Then,
T ∈ DC(X) if, and only if, I − T ∈ Φ+(X).
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Theorem 2.2 ([5]). Let X be a Banach space and let T ∈ C(X). If µT is
demicompact for each µ ∈ [0, 1], then I − T is a Fredholm operator of index
zero.

Theorem 2.3 ([5]). Let X be a Banach space and let T : D(T ) ⊆ X → X be
a closed linear operator. If T is a 1-set-contraction, then µT is demicompact
for each µ ∈ [0, 1).

Now let us recall the following results:

Theorem 2.4 ([14, 17]). Let X, Y and Z be Banach spaces, A ∈ L(Y,Z) and
B ∈ L(X,Y ).

(i) If AB ∈ Φ+(X,Z), then B ∈ Φ+(X,Y ).
(ii) If AB ∈ Φ−(X,Z), then A ∈ Φ−(Y, Z).
(iii) If X = Y = Z, AB ∈ Φ(X) and BA ∈ Φ(X), then A ∈ Φ(X) and

B ∈ Φ(X).
(iv) If A ∈ Φ+(Y,Z) and B ∈ Φ+(X,Y ), then AB ∈ Φ+(X,Z).
(v) If A ∈ Φ(Y,Z) and B ∈ Φ(X,Y ), then AB ∈ Φ(X,Z) and i(A+B) =

i(A) + i(B).

Proposition 2.1 ([17]). Let X be a Banach space and let T ∈ C(X). Then,
λ /∈ σe5(T ) if, and only if, (λ− T ) ∈ Φ(X) and i(λ− T ) = 0.

Theorem 2.5 ([8]). Let X be a Banach space and let T ∈ C(X). Then,
(i) λ /∈ σe7(T ) if, and only if, λ− T ∈ Φ+(X) and i(λ− T ) ≤ 0.
(ii) λ /∈ σe8(T ) if, and only if, λ− T ∈ Φ−(X) and i(λ− T ) ≥ 0.

Theorem 2.6 ([2, 9]). Let X be a Banach space and let T ∈ C(X). Then,
(i) λ /∈ σewl(T ) if, and only if, λ− T ∈ Φl(X) and i(λ− T ) ≤ 0.
(ii) λ /∈ σewr(T ) if, and only if, λ− T ∈ Φr(X) and i(λ− T ) ≥ 0.
(iii) σe5(T ) = σewl(T ) ∪ σewr(T ).

In the rest of this section, we will give some results which guarantee the
demicompactness of the sum and the product of two operators.

Proposition 2.2. Let X be a Banach space and let A ∈ C(X) ∩ DC(X) and
B ∈ L(X). If the operator I − A has a left (resp. right) Fredholm inverse Al
(resp. Ar) such that BAl (resp. ArB) ∈ DC(X), then A+B ∈ DC(X).

Proof. Since Al is a left Fredholm inverse of I −A, then

Al(I −A) = I −K, where K ∈ K(X).

Then, the operator I −A−B can be written as follows

(2.1) I −A−B = (I −BAl)(I −A)−BK.
Now, let (xn)n be a bounded sequence in X satisfying (I−A−B)xn converges
to an element of X. It follows from Eq. (2.1) together with the compactness
of BK and the demicompactness of BAl that (I − A)xn has a convergent
subsequence. Using the demicompactness of A, we infer that (xn)n admits a
convergent subsequence and this shows the demicompactness of A+B. �
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Theorem 2.7. Let X be a Banach space and let A and B be two bounded
operators. If A has a left Fredholm inverse Al such that Al+B ∈ F+(X), then
AB ∈ DC(X).

Proof. Let Al be a left Fredholm inverse of A, then

AlA = I −K,

where K ∈ K(X). It follows that

Al(I −AB) = Al − (I −K)B = Al −B −KB.

Using the fact that KB ∈ Φ+(X) together with the fact that Al−B ∈ F+(X),
we infer that Al(I−AB) ∈ Φ+(X). Now, the result follows from both Theorems
2.4(i) and 2.1. �

3. Polynomially demicompact operators

In this section, we will generalize the following result proved in [11] for the
class of polynomially demicompact operators on X. In fact, the authors proved
that a polynomially compact operator T , element of P(X) := {T ∈ L(X) such
that there exists a nonzero complex polynomial P (z) =

∑p
r=0 arz

r satisfying
P (1) 6= 0, P (1) − a0 6= 0, and P (T ) ∈ K(X)}, is demicompact. In order to
state our results, we need to introduce the following set, denoted by PDC(X),
which is defined by:

PDC(X) =
⋃

P∈C[z]\{0},P (1) 6=0

HP ,

where

HP :=

{
T ∈ L(X) such that

1

P (1)
P (T ) ∈ DC(X)

}
.

We note that PDC(X) contains the set P(X).

Theorem 3.1. Let X be a Banach space. Then, T ∈ PDC(X) if, and only if,
T is demicompact.

Proof. We first establish the following relation that we are using in the proof.
Since I − T commutes with I, Newton’s binomial formula allows us to write
the following relation

T j = I +

j∑
i=1

(−1)iCij(I − T )i.

By making some simple calculations, we may write

P (T ) = P (1)I +

p∑
j=1

aj

(
j∑
i=1

(−1)iCij(I − T )i

)
.
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Since P (1) 6= 0, we have

(3.1) I − 1

P (1)
P (T ) =

1

P (1)

p∑
j=1

aj

(
j∑
i=1

(−1)iCij(I − T )i

)
.

Now, let (xn)n be a bounded sequence in X satisfying (I − T )xn → x0. Using
the continuity of T together with the relation (3.1), we infer that there exists
x such that (

I − 1

P (1)
P (T )

)
xn → x.

By demicompactness of 1
P (1)P (T ), we conclude that (xn)n admits a convergent

subsequence. The converse can be checked by taking P (z) = z. �

Theorem 3.2. Let X be a Banach space and let T ∈ L(X). Suppose that
there exists a complex polynomial P such that P (0) = 0. Then, I − P (T ) is
demicompact if, and only if, I − T is demicompact.

Proof. Assume that I−P (T ) is a demicompact operator, it follows from Theo-
rem 2.1 that P (T ) ∈ Φ+(X). Now, take x ∈ N (T ), then Tx = 0 which implies
that for all j ≥ 1, T j = 0. Hence,

P (T )x =

m∑
j=0

ajT
jx = P (0)x+

m∑
j=1

ajT
jx = 0,

where P (z) =
∑m
j=0 ajz

j . Then, N (T ) ⊂ N (P (T )) is obvious and this shows

that α(T ) <∞. Next, sinceR(P (T )) is closed, we deduce from Theorem 3.12 in
[17] that there exists k > 0 such that ∀y ∈ X, ‖y‖ ≤ k‖P (T )y‖. In particular,

‖x‖ ≤ k‖P (T )x‖

≤ k
m∑
j=1

|aj |‖T‖j−1‖Tx‖.

The use of Theorem 3.12 in [17] shows that R(T ) is closed. Therefore, T ∈
Φ+(X) and we conclude by Theorem 2.1 in [6] that I − T is demicompact.
Conversely, the result can be obtained by taking P (z) = z. �

Remark 3.1. Using Theorem 3.1 in [5] and Theorem 2.1 in [6], we deduce
that if P is a complex polynomial such that P (0) = 0 and T ∈ L(X), then
P (T ) ∈ Φ+(X) if, and only if, T ∈ Φ+(X).

Theorem 3.3 ([12]). If x(t) ∈ C1[0, T ] for T > 0, then

CD
(α2)
0,t CD

(α1)
0,t x(t) = CD

(α1)
0,t CD

(α2)
0,t x(t) = CD

(α1+α2)
0,t x(t), t ∈ [0, T ],

where α1 and α2 ∈ R+ and α1 + α2 ≤ 1.
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Theorem 3.4 ([12]). If x(t) ∈ Cm[0, T ], m ∈ N for T > 0, then

CD
(α)
0,t x(t) = CD

(αn)
0,t · · ·CD

(α2)
0,t CD

(α1)
0,t x(t); t ∈ [0, T ],

where α =
∑n
i=1 αi; αi ∈ (0, 1], m − 1 ≤ α < m and there exists ik < n such

that
∑ik
j=1 αj = k, and k = 1, 2, . . . ,m− 1.

Example 3.1. Let Cω be the space of continuous ω-periodic functions x :
R → R and C ′ω the space of continuously differentiable ω-periodic functions
x : R → R. Cω equipped with the maximum norm ‖ · ‖∞ and C ′ω with the
norm given by ‖u‖1∞ = max{‖u‖∞, ‖u′‖∞} for u ∈ C′ are Banach spaces. Let
us consider the following differential equation:

x′(t) = a(t)x′(t− h1) + b(t)x(t− h2) + f(t).

Here, a and b are continuous ω-periodic functions such that |a(t)| < k, (k <∞),
where k < 1

ω if ω > 2 or k < 1
2 if ω ≤ 2; f ∈ Cω is a given function and x ∈ C′ω

is an unknown function. This equation can be rewritten in the operator from:

Gx−Ax = f,

where G : C′ω → Cω is given by the formula:

(Gx)(t) = x′(t),

and the operator A : C′ω → Cω by the formula:

(Ax)(t) = a(t)x′(t− h1) + b(t)x(t− h2).

Let us consider the polynomial P (z) = 1
µn z

n and the operator T = µCD
( 1
n );

n ∈ N\{0}, where CD
( 1
n ) is the Caputo derivative of fractional order 1

n and
µ ∈ C\{0}. Applying Theorem 3.4, we get

P (T ) =
1

µn
Tn(x) =

1

µn
[µCD

( 1
n )]nx(t) = x′(t).

Clearly, P (T ) is a bounded linear operator with ‖P (T )‖ = 1 and therefore,
P (T ) is 1-set-contractive. It follows from the use of Theorem 2.3 that Q(T ) =
αnP (T ) is demicompact, for all α ∈]0, 1[. Remark that Q(1) 6= 0, we get from
Theorem 3.1

µCD
( 1
n ) ∈ DC(X) ∀µ ∈ C\{0}.

Then,

µCD
( 1
n ) ∈ DC(X) ∀µ ∈ [0, 1].

Using Theorem 2.2, we infer that

I −C D( 1
n ) ∈ Φ(X) and i(I −C D( 1

n )) = 0.
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4. Characterization of left and right Weyl essential spectra

The aim of this section is to give a refinement of the left and the right Weyl
essential spectra. For this, let X be a Banach space and T ∈ C(X). Let us
consider the following sets ΛX ,ΥT (X), and ΨT (X), respectively, defined by:

ΛX = {J ∈ L(X) such that µJ is demicompact for all µ ∈ [0, 1]} .
ΥT (X) = {K ∈ L(X) such that for all λ ∈ ρ(T +K),

−(λ− T −K)−1K ∈ ΛX
}
.

ΨT (X) = {K is T -bounded such that for all λ ∈ ρ(T +K),

−K(λ− T −K)−1 ∈ ΛX
}
.

We also denote for T ∈ C(X), the following sets:

σle(T ) =
⋂

K∈ΥT (X)

σl(T +K) and σre(T ) =
⋂

K∈ΨT (X)

σr(T +K).

Theorem 4.1. Let X be a Banach space and let T ∈ C(X). Then,

σewl(T ) = σle(T ) and σewr(T ) = σre(T ).

Proof. Let us notice that for T ∈ C(X), K is a T -bounded operator such that
λ ∈ ρ(T + K), then, according to closed graph theorem (Lemma 2.1 in [16]),
K(λ − T −K)−1 is a closed linear operator defined on X and then bounded.
We first prove that σewl(T ) ⊂ σle(T ) (resp. σewr(T ) ⊂ σre(T )). Indeed, for
λ /∈ σle(T ) (resp. λ /∈ σre(T )), there exists K ∈ ΥT (X) (resp. K ∈ ΨT (X)) such
that λ /∈ σl(T +K) (resp. λ /∈ σr(T +K)). Hence,

λ− T −K ∈ Φl(X) and i(λ− T −K) = 0,

(resp. λ− T −K ∈ Φr(X) and i(λ− T −K) = 0).

Which implies that

λ− T −K ∈ Φl(X) and i(λ− T −K) ≤ 0,

(resp. λ− T −K ∈ Φr(X) and i(λ− T −K) ≥ 0).

Next, since K ∈ ΥT (X), (resp. K ∈ ΨT (X)) then −(λ − T −K)−1K ∈ ΛX ,
(resp. −K(λ − T − K)−1 ∈ ΛX), whenever λ ∈ ρ(T + K). Thus, applying
Theorem 2.2, one has

I + (λ− T −K)−1K ∈ Φ(X) and i[I + (λ− T −K)−1K] = 0,

which implies that

I + (λ− T −K)−1K ∈ Φl(X) and i[I + (λ− T −K)−1K] ≤ 0

(resp.

I + (λ− T −K)−1K ∈ Φr(X) and i[I + (λ− T −K)−1K] ≥ 0).

Using the equality

λ− T = (λ− T −K)[I + (λ− T −K)−1K]
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(resp.

λ− T = [I +K(λ− T −K)−1](λ− T −K)),

we deduce from Theorem 2.5 in [7] that

λ− T ∈ Φl(X) and i(λ− T ) ≤ 0

(resp.

λ− T ∈ Φr(X) and i(λ− T ) ≥ 0)).

We conclude from Theorem 2.6 that λ /∈ σewl(T ) (resp. λ /∈ σewr(T )). The
inverse inclusion follows from the fact that K(X) ⊂ ΥT (X), (resp. K(X) ⊂
ΨT (X)). �

Corollary 4.1. Let X be a Banach space, T ∈ C(X) and let Γ(X) be a subset
of X containing K(X).

(i) If Γ(X) ⊂ ΥT (X), then σewl(T ) =
⋂

K∈Γ(X)

σl(T +K).

(ii) If Γ(X) ⊂ Ψ(X), then σewr(T ) =
⋂

K∈Γ(X)

σr(T +K).

Proof. Since K(X) ⊂ Γ(X) ⊂ ΥT (X) (resp. K(X) ⊂ Γ(X) ⊂ Ψ(X)), we
obtain⋂

K∈ΥT (X)

σl(T +K) ⊂
⋂

K∈Γ(X)

σl(T +K) ⊂
⋂

K∈K(X)

σl(T +K) := σewl(T )

(resp.⋂
K∈ΨT (X)

σr(T +K) ⊂
⋂

K∈Γ(X)

σr(T +K) ⊂
⋂

K∈K(X)

σr(T +K) := σewr(T )).

The use of Theorem 4.1 allows us to conclude that

σewl(T ) =
⋂

K∈Γ(X)

σl(T +K),

and

σewr(T ) =
⋂

K∈Γ(X)

σr(T +K).

Hence, we get the desired result. �

5. Demicompactness results for operator matrices

Let X, Y and Z be three Banach spaces. In this paper, we consider the
linear operators ΓX from X into Z and ΓY from Y into Z. In this section,
we are concerned with some new results which can be used to determinate
the essential spectra of the matrix operator L, the closure of L0, on the space
X × Y . Let us consider an operator which is formally defined by a matrix

(5.1) L0 :=

(
A B
C D

)
,
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where the operator A acts on X and has domain D(A), D is defined on D(D)
and acts on the Banach space Y and the intertwining operators B and C are
defined on the domains D(B) and D(C), respectively, and act between these
spaces. Then the operator L0 is defined on the domain [D(A)∩D(C)]×[D(D)∩
D(B)] and

D(L0) =

{(
x
y

)
such that x ∈ D(A), y ∈ D(D) ∩ D(B) and ΓXx = ΓY y

}
.

In the following, it is always assumed that the entries of this matrix satisfy the
following conditions, introduced in [4].

(H1) The operator A is densely defined and closable.
It follows that D(A), the domain of closure A of A, coincides with the
Banach space XA which is contained in X.

(H2) D(A) ⊂ D(ΓX) ⊂ XA and ΓX is bounded as a mapping from XA into
Z.
The extension of ΓX by continuity to XA = D(A) is denoted by ΓX ,
which is a bounded operator from XA into Z.

(H3) The lineal D(A)∩N (ΓX) is dense in X and the resolvent set of restric-
tion A1 := A|D(A)∩N(ΓX )

is not empty, i.e., ρ(A1) 6= ∅.
(H4) D(A) ⊂ D(C) ⊂ XA and C is closable as an operator from XA into Y .

Remark 5.1. It follows from (H3) that A1 is a closed operator, whence D(A1)
is a closed subspace of XA. The closed graph theorem and (H4) imply that for
λ ∈ ρ(A1) the operator Cλ := C(A1 − λI)−1 from X into Y is bounded.

Remark 5.2. Under the assumptions (H1)-(H3), we infer that for each λ ∈
ρ(A1),

(i) the following decomposition holds:

D(A) = D(A1)⊕N (A− λI).

(ii) Γλ := ΓX |N(A−λI) is injective andR(Γλ)= ΓX(N (A−λI))= ΓX(D(A))

:= Z1 does not depend on λ.
(iii) the inverse Kλ of the operator Γλ is

Kλ := (ΓX |N(A−λI))
−1 : Z1 → N (A− λI) ⊂ X.

Concerning the operators Kλ, D, ΓY and B we impose the following condi-
tions:

(H5) For some (hence for all) λ ∈ ρ(A1), the operator Kλ is bounded as a
mapping from Z into X.

(H6) The operator D is densely defined and closed with ρ(D) 6= ∅.
(H7) D(ΓY ) ⊃ D(D) ∩ D(B), the set

Y1 = {y such that y ∈ D(D) ∩ D(B) and ΓY y ∈ Z1}
is dense in Y and the restriction of ΓY to this set is bounded as an
operator from Y into Z.
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(H8) For some (hence for all) λ ∈ ρ(A1), the operator (A1 − λI)−1B is

closable and its closure (A1 − λI)−1B is bounded.

We recall the following results which describe the operator L0.

Remark 5.3. We will denote by
(i) ΓX the extension of ΓX by continuity to D(A) := XA. It is a bounded

operator from XA into Z.

(ii) Γ
◦
Y the extension of ΓY |Y1 .

(iii) Kλ the extension of Kλ to the closure Z1 of Z1 with respect to the
norm of Z. Without loss of generality we assume that Z1 = Z. Clearly, the
operator Kλ is also bounded as a mapping from Z1 to XA.

We consider in the space Y , for λ ∈ ρ(A1), the operator

Mλ := D + CKλΓY − CλB.
The operator Mλ is defined on the set Y1, which is dense in Y according to
(H7). Here we observe that ΓY is bounded on this domain by assumption
(H7), that Kλ is bounded by assumption (H8). From (H4) and (H8), we infer
that if Mλ is closable as an operator in Y for some λ ∈ ρ(A1), then it is closable
for all λ ∈ ρ(A1). We emphasize also that the domain of Mλ does not depend
on λ.

Theorem 5.1 ([4]). Let conditions (H1)-(H8) be satisfied. Then, the operator
L0 is closable in X×Y if, and only if, the operator Mλ := D+CKλΓY −CλB
is closable for some λ ∈ ρ(A1), and equivalently, for all λ ∈ ρ(A1). Moreover,
the closure L of L0 is given by:

L = λI +

(
I 0
Cλ I

)(
A1 − λI 0

0 Mλ − λI

)(
I Gλ
0 I

)
,(5.2)

where Gλ := −KλΓ
◦
Y + (A1 − λI)−1B.

Remark 5.4. For each λ ∈ C, we have:

λ− L =

(
I 0
Cµ I

)(
λ−A1 0

0 λ−Mµ

)(
I Gµ
0 I

)
− (λ− µ)Nµ

:= UV (λ)W − (λ− µ)Nµ,(5.3)

where

Nµ =

(
0 Gµ
Cµ CµGµ

)
.

Proposition 5.1. Let L0 assumptions (H1)-(H8) hold and suppose that there
is µ 6= 0 such that 1

µ ∈ ρ(A1). If the operator µM 1
µ

is demicompact, then µL

is a demicompact operator.

Proof. Let ( xnyn )n ∈ D(L) be a bounded sequence such that(
x′n
y′n

)
:= (I − µL)

(
xn
yn

)
→
(
x0

y0

)
.
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Recalling the factorization (5.2) for 1
µ ∈ ρ(A1), one has

L =
1

µ
I −

(
I 0
C 1
µ

I

)( 1
µ −A1 0

0 1
µ −M 1

µ

)(
I G 1

µ

0 I

)
.

Then,(
x′n
y′n

)
=

(
I 0
C 1
µ

I

)(
I − µA1 0

0 I − µM 1
µ

)(
I G 1

µ

0 I

)(
xn
yn

)
,

means exactly,(
I 0
−C 1

µ
I

)(
x′n
y′n

)
=

(
I − µA1 0

0 I − µM 1
µ

)(
I G 1

µ

0 I

)(
xn
yn

)
.

Hence, we get the following system:

(5.4)

{
(I − µA1)−1x′n = xn +G 1

µ
yn,

−C 1
µ
x′n + y′n = (I − µM 1

µ
)yn.

Since the operator C 1
µ

is bounded, then we infer from the second equation of

the system (5.4) that (I − µM 1
µ

)yn is convergent. Combining this result to-

gether with the demicompactness of µM 1
µ

, we show that (yn)n has a convergent

subsequence. Hence, the first equation of the system (5.4) allows us to conclude
that (xn)n has a convergent subsequence, which proves the demicompactness
of µL and this shows our claim. �

For more generalization, we give the following result.

Theorem 5.2. Let assumptions (H1)-(H8) be satisfied and suppose that for
every µ ∈ ρ(A1), there is λ ∈ C\{0} such that λA1 is demicompact. Then, if
Cµ is compact and λMµ is demicompact, then λL ∈ DC(X × Y ).

Proof. Let µ ∈ ρ(A1). By assumption, there is a complex nonzero number λ
verifying λA1 ∈ DC(X). Take a bounded sequence ( xnyn )n ∈ D(L) such that(

x′n
y′n

)
:= (I − λL)

(
xn
yn

)
→
(
x0

y0

)
.

Let µ ∈ ρ(A1) be such that there is a complex nonzero number λ verifying
λA1 ∈ DC(X). Thanks to Remark 5.4, one has

1

λ
− L =

(
I 0
Cµ I

) 1

λ
−A1 0

0
1

λ
−Mµ

( I Gµ
0 I

)
− (

1

λ
− µ)Nµ.

Thus,

I − λL =

(
I 0
Cµ I

)(
I − λA1 0

0 I − λMµ

)(
I Gµ
0 I

)
− (1− λµ)Nµ.
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Therefore,

(5.5)

(
x′n
y′n

)
=

(
I 0
Cµ I

)(
I − λA1 0

0 I − λMµ

)(
I Gµ
0 I

)(
xn
yn

)
− (1− λµ)Nµ

(
xn
yn

)
.

Observe that (5.5) is equivalent to(
I 0
−Cµ I

)(
x′n
y′n

)
+ (1− λµ)

(
I 0
−Cµ I

)
Nµ

(
xn
yn

)
=

(
I − λA1 0

0 I − λMµ

)(
I Gµ
0 I

)(
xn
yn

)
.

Moreover, by making some simple calculations, we may show that(
x′n

−Cµx′n + y′n

)
+

(
(I − λµ)Gµyn
(I − λµ)Cµxn

)
=

(
(I − λA1)xn + (I − λA1)Gµyn

(I − λMµ)yn

)
,

in equivalent way,

(5.6)

{
x′n − λ(µ−A1)Gµyn = (I − λA1)xn,
−Cµx′n + y′n + (I − λµ)Cµxn = (I − λMµ)yn.

We deduce from the fact that Gµ is compact and (yn)n is bounded, that λ(µ−
A1)Gµyn has a convergent subsequence. Hence, from the first equation of
system (5.6), we infer that (I−λA1)xn has a convergent subsequence. Using the
demicompactness of λA1, we deduce that there exists a convergent subsequence
of (xn)n. Now, since Cµ is bounded, we conclude from the second equation of

system (5.6) that (I − λMµ)yn has a convergent subsequence. This together

with the fact that λMµ is demicompact allows us to conclude that (yn)n has a
convergent subsequence. Therefore, there exists a subsequence of ( xnyn )n which
converges on D(L). Thus, λL is demicompact. �

Theorem 5.3. Let assumptions (H1)-(H8) be satisfied and let µ ∈ ρ(A1) such
that (1 − µ)Nµ ∈ F+(X × Y ). If the operators A1 and Mµ are demicompact,
then I − L is an upper semi-Fredholm operator.

Proof. According to the factorization (5.3), we have:

I − L =

(
I 0
Cµ I

)(
I −A1 0

0 I −Mµ

)(
I Gµ
0 I

)
− (1− µ)Nµ

:= UV (1)W − (1− µ)Nµ.

Since A1 and Mµ are demicompact, it follows from Theorem 2.1, the operators

I − A1 and I − Mµ are upper semi-Fredholm, hence V (1) ∈ Φ+(X × Y ).
Taking into account that the operators U and W are invertible, we deduce
that UV (1)W is an upper semi-Fredholm operator. Now, owing to the fact
that (1−µ)Nµ ∈ F+(X×Y ), we conclude that I−L is an upper semi-Fredholm
operator. �
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Before giving the next results, we may state the following notations:
Assume that L0 satisfies (H1)-(H8) and suppose that [1,+∞[⊂ ρ(A1(λ)). Ac-
cording to the Frobenius-Schur factorization, one has

λL = I −
(

I 0
C1(λ) I

)(
I −A1(λ) 0

0 I −M1(λ)

)(
I G1(λ)
0 I

)
,

where,

A1(λ) = λA|D(A)∩N(ΓX )
,

C1(λ) = λC(A1(λ)− I)−1,

K1(λ) = (ΓX |N(λA−I))
−1,

ΓY (λ) = ΓX |N(λA−I) ,

Γ
◦
Y (λ) the extension of ΓY (λ)|Y1

,

M1(λ) = λ(D + CK1(λ)ΓY (λ)− C1(λ)B), and

G1(λ) = −K1(λ)Γ
◦
Y (λ) + λ(A1(λ)− I)−1B.

Theorem 5.4. Let assumptions (H1)-(H8) hold and let λ ∈ C such that
CK1(λ)ΓY (λ) − C1(λ)B is bounded on Y and [1,+∞[⊂ ρ(A1(λ)). If λD is
demicompact and I−λD has a left (resp. right) Fredholm inverse Dl (resp. Dr)
such that λ(CK1(λ)ΓY (λ)−C1(λ)B)Dl (resp. λDr(CK1(λ)ΓY (λ)−C1(λ)B))
is demicompact, then λL ∈ DC(X × Y ).

Proof. Let ( xnyn )n be a bounded sequence in D(L) which verifies(
x′n
y′n

)
:= (I − λL)

(
xn
yn

)
→
(
x0

y0

)
.

It follows from Eq. (5.2) that(
x′n
y′n

)
=

(
I 0

C1(λ) I

)(
I −A1(λ) 0

0 I −M1(λ)

)(
I G1(λ)
0 I

)(
xn
yn

)
,

thus,(
I 0

−C1(λ) I

)(
x′n
y′n

)
=

(
I −A1(λ) 0

0 I −M1(λ)

)(
I G1(λ)
0 I

)(
xn
yn

)
,

which allows us to get the following system

(5.7)

{
x′n = (I −A1(λ))xn + (I −A1(λ)G1(λ)yn,
−C1(λ)x′n + y′n = (I −M1(λ))yn.

Since both λD and λ(CK1(λ)ΓY (λ)−C1(λ)B)Dl (resp. λ
αDr(CK1( λα )ΓY ( λα )−

C1( λα )B)) are demicompact, we infer from Proposition 2.2 that the operator
λD + λ(CK1(λ)ΓY (λ) − C1(λ)B) is such too. Now, it is easy to show that
if a closable operator is demicompact, then its closure is also demicompact.
Consequently, we get the demicompactness of M1(λ). Moreover, it should be
observed that the second equation of the system (5.7) implies the convergence
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of
(
(I −M1(λ))yn

)
n
, hence (yn)n has a convergent subsequence. Next, the first

equation of the system (5.7) implies that (xn)n has a convergent subsequence.
Therefore, there exists a convergent subsequence of ( xnyn )n which converges in
D(L). Hence, the demicompactness of λL is proved. �

The following corollary gives a sufficient condition to guarantee the demi-
compactness of L, the closure of the closable matrix operator L0.

Corollary 5.1. Let assumptions (H1)-(H8) hold. Suppose that CK1ΓY −C1B
is bounded on Y and [1,+∞[⊂ ρ(A1). If D is demicompact and I −D has a
left (resp. right) Fredholm inverse Dl (resp. Dr) such that (CK1ΓY −C1B)Dl

(resp. Dr(CK1ΓY − C1B)) is demicompact, then L ∈ DC(X × Y ).

Proof. The proof is a direct application of Theorem 5.4 for λ = 1. �

6. Essential spectra of matrix operators by means of
demicompactness classes

We start this section by giving some notations that we will need in the
proof. Assume that L0 satisfies (H1)-(H8) and let α ∈ C\{0}. Suppose that
[1,+∞[⊂ ρ(A1( 1

α )). Applying Remark 5.4 on the operator 1
αL and for the case

λ = 1, one has

I − 1

α
L =

(
I 0

Cµ( 1
α ) I

)(
I −A1( 1

α ) 0
0 I −Mµ( 1

α )

)(
I Gµ( 1

α )
0 I

)
− (1− µ)Nµ(

1

α
)

:= UV (1)W − (1− µ)Nµ(
1

α
),(6.1)

where

Nµ(
1

α
) :=

(
0 Gµ( 1

α )
Cµ( 1

α ) Cµ( 1
α )Gµ( 1

α )

)
.

Theorem 6.1. Let assumptions (H1)-(H8) hold and suppose that [1,+∞[⊂
ρ(A1( 1

α )), then we have:

(i) If for all α ∈ C\{0}, the operator 1
αD is demicompact and

1

α
(CK1(

1

α
)ΓY (

1

α
)− C1(

1

α
)B)

is bounded on Y and if I− 1
αD has a left (resp. right) Fredholm inverse Dl (resp.

Dr) such that 1
α (CK1( 1

α )ΓY ( 1
α ) − C1( 1

α )B)Dl (resp. 1
αDr(CK1( 1

α )ΓY ( 1
α ) −

C1( 1
α )B)) is demicompact and (1− µ)Nµ( 1

α ) ∈ F+(X × Y ), then

σe1(L)\{0} = σe1(A1)\{0} ∪ σe1(αMµ(
1

α
))\{0}.

(ii) If for all λ ∈ [0, 1] and α ∈ C\{0} the operator λ
αD is demicompact and

λ

α
(CK1(

λ

α
)ΓY (

λ

α
)− C1(

λ

α
)B)
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is bounded on Y and if I− λ
αD has a left (resp. right) Fredholm inverse Dl (resp.

Dr) such that λ
α (CK1( λα )ΓY ( λα ) − C1( λα )B)Dl (resp. λ

αDr(CK1( λα )ΓY ( λα ) −
C1( λα )B)) is demicompact and (1− µ)Nµ( λα ) ∈ F(X × Y ), then

σei(L)\{0} = σei(A1)\{0} ∪ σei(αMµ(
1

α
))\{0}, where i ∈ {4, 5},

and

σei(L)\{0} ⊆ σei(A1)\{0} ∪ σei(αMµ(
1

α
))\{0}, where i ∈ {7, 8}.

Proof. (i) Let α ∈ C\{0} be such that α /∈ σe1(L). Then,

(6.2) α− L = α(I − 1

α
L) ∈ Φ+(X × Y ).

Clearly, αI is an upper semi Fredholm operator. We get then the following
equivalence

α− L ∈ Φ+(X × Y )⇐⇒ (I − 1

α
L) ∈ Φ+(X × Y ).

Since both 1
αD and 1

α (CK1( 1
α )ΓY ( 1

α )−C1( 1
α )B)Dl (resp. λ

αDr(CK1( λα )ΓY ( λα )

−C1( λα )B)) are demicompact, it follow from Theorem 5.4 that the operator 1
αL

is such too. Hence, thanks to Theorem 2.1, the operator I− 1
αL ∈ Φ+(X×Y ).

Using the fact that (1 − µ)Nµ( 1
α ) ∈ F+(X × Y ), we infer that I − 1

αL ∈
Φ+(X×Y ) if, and only if, the operator UV (1)W is such too. Now, observe that
U and W are invertible and have bounded inverses, hence I− 1

αL ∈ Φ+(X×Y )

if, and only if, V (1) has this property, if and only if, both I − A1( 1
α ) and

I−Mµ( 1
α ) are demicompact operators. Equivalently, the operators α−A1 and

α− αMµ( 1
α ) are demicompact. Thus,

σe1(L)\{0} = σe1(A1)\{0} ∪ σe1(αMµ(
1

α
))\{0}.

(ii) We claim that

σe4(L)\{0} = σe4(A1)\{0} ∪ σe4(αMµ(
1

α
))\{0}.

For this purpose, take α ∈ C\{0}. Since αI is a Fredholm operator, then
α−L ∈ Φ(X×Y ) if, and only if, the operator (I− 1

αL) ∈ Φ(X×Y ). Next, using

the demicompactness of both λ
αD and λ

α (CK1( λα )ΓY ( λα ) − C1( λα )B)Dl (resp.
λ
αDr(CK1( λα )ΓY ( λα )−C1( λα )B)) for all λ ∈ [0, 1], we deduce from Theorem 5.4

that the operator λ
αL is demicompact. Hence, according to Theorem 2.2, we

have I − 1
αL ∈ Φ(X × Y ). Using Eq. (6.1) and the fact that (1 − µ)Nµ( 1

α ) ∈
F(X × Y ), we infer that I − 1

αL is a Fredholm operator if, and only if, the
operator UV (1)W is such too. Now, observe that U and W are invertible and
have bounded inverses, hence I − 1

αL ∈ Φ(X × Y ) if, and only if, V (1) has

this property if, and only if, α−A1 and α− αMµ( 1
α ) are Fredholm operators.

Thus, the desired result follows.
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Now, we prove the same equality for the Schechter’s essential spectrum. To
this end, we take α ∈ C\{0}. It is easy to see that α − L ∈ Φ(X × Y ) and
i(α−L) = 0 if, and only if, the operator (I− 1

αL) ∈ Φ(X×Y ) and i(I− 1
αL) = 0.

By demicompactness of both λ
αD and λ

α (CK1( λα )ΓY ( λα ) − C1( λα )B)Dl (resp.
λ
αDr(CK1( λα )ΓY ( λα ) − C1( λα )B)) for all λ ∈ [0, 1], we get from Theorem 5.4

that the operator λ
αL is demicompact. Hence, according to Theorem 2.2, the

operator I − 1
αL ∈ Φ(X × Y ) and i(I − 1

αL) = 0. Using Eq. (6.1) and the fact

that (1− µ)Nµ( 1
α ) ∈ F(X × Y ), we infer that I − 1

αL is a Fredholm operator
with index zero if, and only if, the operator UV (1)W is such too. Note that U
and W are invertible and have bounded inverses, then I− 1

αL is Fredholm with

index zero if, and only if, V (1) has this property, if and only if, I −A1( 1
α ) and

I−Mµ( 1
α ) are Fredholm operators with indexes zero. Therefore, α−A1 and α−

αMµ( 1
α ) have also this property. Hence α /∈ σe5(A1)\{0} ∩ σe5(αMµ( 1

α ))\{0}.
Thus,

(6.3) σe5(A1)\{0} ∪ σe5(αMµ(
1

α
))\{0} ⊆ σe5(L)\{0}.

Conversely, let 0 6= α /∈ σe5(A1)∩σe5(αMµ( 1
α )), then α−A1 and α−αMµ( 1

α )

are Fredholm operators with indexes zero. Equivalently, I − A1( 1
α ) and I −

Mµ( 1
α ) are such too. The boundedness of the operators U and W and their

inverses and the fact that (1 − µ)Nµ( 1
α ) ∈ F(X × Y ) imply that I − 1

αL ∈
Φ(X × Y ) and i(I − 1

αL) = 0. Therefore, α−L ∈ Φ(X × Y ) and i(α−L) = 0,
hence α /∈ σe5(L)\{0}. This immediately shows that

(6.4) σe5(L)\{0} ⊆ σe5(A1)\{0} ∪ σe5(αMµ(
1

α
))\{0}.

Now, the use of Eqs. (6.3) and (6.4) makes us to conclude that

σe5(L)\{0} = σe5(A1)\{0} ∪ σe5(αMµ(
1

α
))\{0}.

We give now the proof for i = 7. Note that the case i = 8 can be checked
similarly. Let α ∈ C\{0}, reasoning in the same way as the case i = 5, we
prove that I − 1

αL ∈ Φ(X ×Y ) and i(I − 1
αL) = 0. This implies that I − 1

αL ∈
Φ+(X × Y ) and i(I − 1

αL) ≤ 0. If α /∈ σe7(A1) ∩ σe7(αMµ( 1
α )), then α − A1

and α−αMµ( 1
α ) are upper semi Fredholm operators with negative indexes. It

remains to get the same properties for the operators I−A1( 1
α ) and I−Mµ( 1

α ).
Since U and W are invertible and have bounded inverses and using the fact
that (1 − µ)Nµ( 1

α ) ∈ F+(X × Y ), we infer that I − 1
αL ∈ Φ+(X × Y ) and

i(I − 1
αL) ≤ 0. Therefore, α − L ∈ Φ+(X × X) and i(α − L) ≤ 0. Now, by

applying Lemma 2.5, we conclude that α /∈ σe7(L)\{0} and then,

σe7(L)\{0} ⊆ σe7(A1)\{0} ∪ σe7(αMµ(
1

α
))\{0}.

Hence, the theorem is proved. �
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