• Title/Summary/Keyword: Fractional Function

Search Result 333, Processing Time 0.032 seconds

Analysis on the Dynamic Characteristics of a Rubber Mount Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무 마운트의 동특성 해석)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • In this paper, a statistical calibration method is proposed in order to identify the variability of complex modulus for a rubber material due to operational temperature and experimental/model errors. To describe temperature- and frequency-dependent material properties, a fractional derivative model and a shift factor relationship are used. A likelihood function is defined as a product of the probability density functions where experimental values lie on the model. The variation of the fractional derivative model parameters is obtained by maximizing the likelihood function. Using the proposed method, the variability of a synthetic rubber material is estimated and applied to a rubber mount problem. The dynamic characteristics of the rubber mount are calculated using a finite element model of which material properties are sampled from Monte Carlo simulation. The calculated dynamic stiffnesses show very large variation.

GPU-based modeling and rendering techniques of 3D clouds using procedural functions (절차적 함수를 이용한 GPU기반 실시간 3D구름 모델링 및 렌더링 기법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.416-422
    • /
    • 2019
  • This paper proposes a GPU-based modeling and rendering of 3D clouds using procedural functions. The formation of clouds is based on modified noise function made with fbm(Fractional Brownian Motion). Those noise values turn into densities of droplets of liquid water, which is a critical parameter for forming the three different types of clouds. At the rendering stage, the algorithm applies the ray marching technique to decide the colors of cloud using density values obtained from the noise function. In this process, all lighting attenuation and scattering are calculated by physically based manner. Once we have the clouds, they are blended on the sky, which is also rendered physically. We also make the clouds moving in the sky by the wind force. All algorithms are implemented and tested on GPU using GLSL.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • 이재국;김진우;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot sports in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

  • PDF

𝜓-COUPLED FIXED POINT THEOREM VIA SIMULATION FUNCTIONS IN COMPLETE PARTIALLY ORDERED METRIC SPACE AND ITS APPLICATIONS

  • Das, Anupam;Hazarika, Bipan;Nashine, Hemant Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.273-288
    • /
    • 2021
  • We proposed to give some new 𝜓-coupled fixed point theorems using simulation function coupled with other control functions in a complete partially ordered metric space which includes many related results. Further we prove the existence of solution of a fractional integral equation by using this fixed point theorem and explain it with the help of an example.

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.

Effects of Intrarenal Arterial Infusion of Pro-Atrial Natriuretic Peptides on Renal Function in Unanesthetized Rabbits (가토 신장기능에 미치는 Pro-Atrial Natriuretic Peptide의 영향)

  • Lee, Jeong-Eun;Cho, Kyung-Woo;Kim, Suhn-Hee
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.131-144
    • /
    • 1990
  • It is well known that the atrial natriuretic peptide (ANP) has a prepro-hormone of 151 amino-acids which loses their hydrophobic signal peptide to form 126 amino acid prohormone. The whole prohormone is released and then cleaved by proteases into more than one circulating forms. Recently, Winters et al. (1988a, b) reported that high concentrations of N-terminal fragments of prepro-ANP $(26{\sim}55),\;(56{\sim}92)\;and\;(104{\sim}123)$ were detected in human plasma. However, their physiological roles have not been established. The present study was conducted to determine whether the N-terminal fragments of pro-ANP have any effect on the renal function and to compare the effect with those of G-terminal fragments of pro-ANP The results indicate that intrarenal arterial infusions of prepro-ANP $(26{\sim}41),\;(26{\sim}55),\;(56{\sim}92)\;and\;(104{\sim}123)$ induced no significant changes in renal function. Whereas ${\alpha}-human$ ANP $(prepro-ANP,\;124{\sim}151)$ and pro-ANP caused a significant increase in urine volume, renal plasma flow, glomerular filtration rate, urinary excretions of sodium, chloride and potassium, and fractional excretion of sodium. These results suggest that the N-terminal fragments of pro-ANP are ineffective, while the C-terminal fragments retain the natriuretic and diuretic activities.

  • PDF

Signal Detection Based on a Decreasing Exponential Function in Alpha-Stable Distributed Noise

  • Luo, Jinjun;Wang, Shilian;Zhang, Eryang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.269-286
    • /
    • 2018
  • Signal detection in symmetric alpha-stable ($S{\alpha}S$) distributed noise is a challenging problem. This paper proposes a detector based on a decreasing exponential function (DEF). The DEF detector can effectively suppress the impulsive noise and achieve good performance in the presence of $S{\alpha}S$ noise. The analytical expressions of the detection and false alarm probabilities of the DEF detector are derived, and the parameter optimization for the detector is discussed. A performance analysis shows that the DEF detector has much lower computational complexity than the Gaussian kernelized energy detector (GKED), and it performs better than the latter in $S{\alpha}S$ noise with small characteristic exponent values. In addition, the DEF detector outperforms the fractional lower order moment (FLOM)-based detector in $S{\alpha}S$ noise for most characteristic exponent values with the same order of magnitude of computational complexity.

THE EVOLUTION OF THE SOLAR NEIGHBORHOOD: II TIME-DEPENDENT IMF AND PRESENT DAY MASS FUNCTION

  • Lee, See-Woo;Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.15 no.2
    • /
    • pp.71-77
    • /
    • 1982
  • According to the star formation rate and metal enrichment rate given by the disk-halo model of Lee and Ann (1981), the two different forms of time-dependent initial mass function (IMF) and the present day mass function (PDMF) of nearby stars have been examined. It was shown that the constraint for the initial rapid metal enrichment requires the time-dependence of IMF at the very early phase ($t{\lesssim}5{\times}10^8$ yrs) of the solar neighborhood. The computed PDMF's show that the PDMF is nearly independent of any specific functional form of IMF as long as the latter includes a Gaussian distribution of log m. This result is due to the very small fractional mass $({\times}5%)$ of stars formed at the very early period during which the IMF is time-dependent. The computed PDMF suggests the presence of more numerous low mass stars than shown in Miller and Scalo's (1979) PDMF, supporting the possibility of the existence of low-velocity M dwarfs. According to the number distribution of stars with respect to [Fe/H], the mean age of these low mass star must be very old so as to yield the mean metal abundance $\bar{[Fe/H]}{\approx}-0.15$ for the stars in the solar neighborhood.

  • PDF