• Title/Summary/Keyword: Fractional Fourier Transform

Search Result 52, Processing Time 0.035 seconds

FRACTIONAL ORDER THERMOELASTIC PROBLEM FOR FINITE PIEZOELECTRIC ROD SUBJECTED TO DIFFERENT TYPES OF THERMAL LOADING - DIRECT APPROACH

  • GAIKWAD, KISHOR R.;BHANDWALKAR, VIDHYA G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.117-131
    • /
    • 2021
  • The problem of generalized thermoelasticity of two-temperature for finite piezoelectric rod will be modified by applying three different types of heating applications namely, thermal shock, ramp-type heating and harmonically vary heating. The solutions will be derived with direct approach by the application of Laplace transform and the Caputo-Fabrizio fractional order derivative. The inverse Laplace transforms are numerically evaluated with the help of a method formulated on Fourier series expansion. The results obtained for the conductive temperature, the dynamical temperature, the displacement, the stress and the strain distributions have represented graphically using MATLAB.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Modified WFRFT-based Transform Domain Communication System Incorporating with Spectrum Mismatching

  • Xu, Ruiyang;Da, Xinyu;Liang, Yuan;Hu, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4797-4813
    • /
    • 2018
  • The transform domain communication system (Hereinafter referred to as TDCS) takes on numerous advantages, inclusive of anti-jamming and low probability of detection. Yet its application is confined by the consistent spectrum in the transmitter and receiver, which is not possible in the case of a huge distance exsits between them. In this paper, a TDCS based modified weighted fractional fourier transform (WFRFT) is proposed to solve the problem resulting from spectrum mismatching for TDCS application. The amplitude and phase information are incorporated with the TDCS signals and transmit to the receiver together in the wake of a modified WFRFT. The basic function and the TDCS signals shall be accessible to the receivers in the wake of an inverse WFRFT transform, which make sure that the original information can be demodulated properly. The system's reliability while transmitting signals with different modulation methods and with spectrum mismatching is demonstrated by bit error rate (BER). In the meantime, the constellations of the signals and the BER performances at the eavesdropper demonstrate the proposed system is better secured.

An Algorithm for Discontinuous Surface Profile Measurement using Wavelength Scanning Interferometer (파장 주사 간섭계를 이용한 불연속면의 표면 형상 측정 알고리즘)

  • 우현구;강철무;조형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.507-514
    • /
    • 2003
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. Recently the shape measurement using interferometric principle is found to be a successful methodology among other visual or optical technologies. Especially, the measuring method using wavelength scanning interferometer(WSI) has a great advantage in comparison with other conventional jnterferometric methods in that the absolute distance from the reference surface can be directly obtained from the amount of jnterferometric phase change. However, the measurement methods using WSI proposed by other researchers have low measurement resolution so far because they can't measure fractional phase change. To avoid this shortcoming we propose a new algorithm in this paper, which can obtain a small amount of even fractional phase change by sinusoidal function fitting. To evaluate the effectiveness of the proposed sinusoidal function fitting algorithm, a series of measuring experiments are conducted for discontinuously shaped specimens which have various height. The proposed algorithm shows much more enhanced measurement resolution than other existing conventional algorithms such as zero crossing algorithm and Fourier transform algorithm.

A robust frequency offset estimation scheme for an OFDM system (OFDM 수신기를 위한 강인한 주파수 옵셋 보정 기법)

  • Wui, Jung-Hwa;Hwang, Hu-Mor;Song, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3100-3102
    • /
    • 2000
  • In this paper, we propose to a robust frequency offset estimation method of OFDM signals. A carrier frequency offset may be decomposed into an integer multiple of the subcarrier spacing and a residual frequency offset. Fractional part of frequency offset is obtained by using the maximum likelihood estimation(MLE) method. And we use the correlation of the samples at the output of the discrete Fourier transform(DFT) to estimate integer part of frequency offset. The result shows that the estimation frequency offset is almost linear to frequency offset. We propose to an improved estimation error variance of the carrier frequency offset estimation. The proposed estimator has better performance than the conventional ones in terms of error variance and tracking range.

  • PDF

Physical Layer Security Scheme Based on Polarization Modulation and WFRFT Processing for Dual-polarized Satellite Systems

  • Luo, Zhangkai;Wang, Huali;Zhou, Kaijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5610-5624
    • /
    • 2017
  • A novel scheme based on polarization modulation and the weighted fractional Fourier transform (PM-WFRFT) is proposed in this paper to enhance the physical layer security of dual-polarized satellite systems. This scheme utilizes the amplitude and phase of the carrier as information-bearing parameters to transmit the normal signal and conceals the confidential information in the carrier's polarization state (PS). After being processed by WFRFT, the characteristics of the transmit signal (including amplitude, phase and polarization state) vary randomly and in nearly Gaussian distribution. This makes the signal very difficult for an eavesdropper to recognize or capture. The WFRFT parameter is also encrypted by a pseudo-random sequence and updated in real time, which enhances its anti-interception performance. Furthermore, to prevent the polarization-based impairment to PM-WFRFT caused by depolarization in the wireless channel, two components of the polarized signal are transmitted respectively in two symbol periods; this prevents any mutual interference between the two orthogonally polarized components. Demodulation performance in the system was also assessed, then the proposed scheme was validated with a simulated dual-polarized satellite system.

Calibration of a Chirp Sonar System Using Seven Tungsten Carbide Spheres of Different Sizes (크기가 다른 7개의 탄화 텅스텐 구를 이용한 Chirp 소너 시스템의 교정)

  • Lee, Dae-Jae;Lee, Kyounghoon;Jung, Bong-Kyu;Kang, Hee-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.207-217
    • /
    • 2022
  • The accurate calibration of broadband echo sounders is essential for providing high quality acoustic information for fisheries applications. The increased range resolution of broadband echo sounder systems improves the detection and characterization of targets near boundaries, such as fish near the seabed. Most echo sounder systems are calibrated using tungsten-carbide (WC) spheres. For accurate calibration, it is necessary to select WC spheres of optimized diameters used frequently to calibrate echo sounder systems. For these purposes, the measured and simulated target strength (TS) data for seven WC spheres of different sizes were compared across a bandwidth of 100-200 kHz. The frequency-dependent TS pattern for the specular wave measured from two WC spheres using the fractional Fourier transform was also estimated and analyzed. Comparative results are presented for all the spheres and the best average precision of 0.15 dB was obtained for the 22 mm WC sphere.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

Orthogonal variable spreading factor encoded unmanned aerial vehicle-assisted nonorthogonal multiple access system with hybrid physical layer security

  • Omor Faruk;Joarder Jafor Sadiqu;Kanapathippillai Cumanan;Shaikh Enayet Ullah
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.213-225
    • /
    • 2023
  • Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.

Performance Evaluation of DiffServ Networks Considering Self-Similar Traffic Characteristics (자기유사 트래픽 특성을 고려한 차등서비스 망의 성능 평가)

  • Park, Jeong-Sook;Jeon, Yong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.344-355
    • /
    • 2008
  • In this paper, we are dealing with the problems of performance evaluation of Differentiated Services(DiffServ) networks. For successful performance evaluation, the ability to accurately represent "real" traffic on the network by suitable traffic models is an essential ingredient. Many research results on the nature of real traffic measurements demonstrated LRD(long-range dependence) property for the Internet traffic including Web, TELNET, and P2P traffic. The LRD can be effectively represented by self-similarity. In this paper, we design and implement self-similar traffic generator using the aggregated On/Off source model, based on the analysis of the On-Off source model, FFT-FGN(Fast Fourier Transform-Fractional Gaussian Noise) model, and RMD(Random Midpoint Displacement) model. We confirmed the self-similarity of our generated traffic by checking the packet inter-arrival time of TCPdump data. Further we applied the implemented traffic generator to the performance evaluation of DiffServ networks and observed the effect of performance to the a value of the On/Off model, and performance of EF/BE class traffic by CBQ.