• Title/Summary/Keyword: Fraction of partitioning

Search Result 88, Processing Time 0.026 seconds

Evaluation of Environmental Mutagens-Complex Mixture in Diesel Exhaust Respirable Particulate Matter

  • Kim, Soung-Ho;Ryu, Byung-Tak;Jang, Hyoung-Seok;Kim, Yun-Hee;Lee, Do-Han;Han, Kyu-Tae;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.194-194
    • /
    • 2003
  • The International Agency for Research on Cancer (IARC, 1989) has classified whole diesel exhaust as probably carcinogenic to humans. Diesel exhaust particulate matter (DPM) adsorbs different chemical substances including PAHs and nitroarenes. DPM is emphasized because it is a major component of diesel exhaust, it is suspected of contributing to a health hazard. Diesel exhaust is a complex mixture of carbon particles and associated organics and inorganics, and it is not known what fraction or combination of fractions cause the health effects [cancer effects, noncancer effects (respiratory tract irritation/inflammation and changes in lung function)] that have been observed with exposure to diesel exhaust. In order to identify which chemical classes are responsible for the majority of the observed biological activities, we performed a particular biological/chemical analysis. Respirable particulate matter (PM2.5: <2.5mm) was collected from diesel engine exhaust using a high-volume sampler equipped with a cascade impactor. Particulate oganic matter was extracted by the dichloromethane/sonication method and the crude extract was fractionated according to EPA recommended procedure into seven fractions by acid-base partitioning and silica gel column chromatography. We examined genotoxic potentials of diesel exhaust particulate matter using novel genotoxicity tests, which are rapid, simple and sensitive methods for assessing DNA-damage at the DNA and chromosomal level (comet assay, in vitro MN test and Ames test). Higher genotoxic potency was observed in non polar fractions and several PAHs were detected by GC-MS, such as 1,2,5,6 dibenzanthracene, chrysene, 1,2-benzanthracene, phenanthrene and fluoranthene.

  • PDF

Influence of Organic Matter and Temperature on the Sorption of Volatile Organic Compounds on Soil (토양 흡착에 대한 유기탄소와 온도의 영향)

  • 김희경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.57-59
    • /
    • 1998
  • The headspace method has been acknowledged as a cost-effective and convenient method to analyze volatile organic compounds(VOCs) in soil. The headspace analysis is based on equilibrium partitioning of VOCs among water, air and soil in a closed system. However, the headspace method cannot be applied to soils where most of the VOCs remain sorbed even at high temperature. In this study, it was investigated how the sorption characteristics of VOCs varied with soil with different organic carbon contents and temperature. This study showed that all the VOCs were volatilized, not sorved, only in the soil with 5% organic carbon at 45$^{\circ}C$ or higher. Some fraction of VOCs remained in soil with 8% organic carbon at $65^{\circ}C$ of higher. Most of the VOCs remained sorbed in soil with 12% organic content even at 95$^{\circ}C$. This result suggested that the headspace method can be applied only to soils with little organic carbon content (less than 5%). In this case, 45$^{\circ}C$ seems to be high enough to volatilize all the VOCs from soil. Large particles still showed a significant sorption capacity for VOCs from soil. Large Particles still showed a significant sorption capacity for VOCs despite of their low level of organic carbon content. It was also shown that the organic carbon sorption coefficients (Koc) of VOCs varied with soils with different organic carbon content. This suggests that not only the organic matter content of soil but also the property of the organic matter in soil influence the sorption of VOCs to soil.

  • PDF

Fractionation and the Removal of Arsenic-Contaminated Soils Around Dalchĕn Mine Using Soil Washing Process (달천광산 주변 토양 내 비소의 존재형태 및 토양세척법에 의한 제거)

  • Han, Kyung-Wook;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.185-193
    • /
    • 2008
  • This study has been carried out to examine the feasibility of soil washing process for reducing arsenic contamination level of soil around $Dalch\hat{e}n$ Mine. The results of physicochemical tests of the target soil showed that pH was weak alkalic ($pH{\simeq}7.8$), soil texture was coarse sand, and organic contents (5.7%) and CEC (Cation exchange capacity; 21.5 meq/100 g) were similar with those of soils generally found in Korea. Contamination levels of arsenic were found to over 201 mg/kg which exceed the Korea standard levels of countermeasure and concern. To investigate chemical partitioning of heavy metals, sequential extraction procedures were adopted and it was found that arsenic was predominantly associated with the residual fraction among five fractional forms as much as over 85%, which is demonstrating that only less than 15% of all might be vulnerable to a selected washing agents. Among 6 kinds of washing agents applied on the screening for arsenic-contaminated soil, HCl and $H_3PO_4$ solution were selected as promising washing agents. In comparison with HCl and $H_3PO_4$ solutions for arsenic washing by kinetic experiment in the change of pH, soil-solution ratio, temperature, and washing solution concentration, $H_3PO_4$ solution was determined to best one of agents tested, which showed faster washing rate than HCl to accomplish regulatory goal.

Effects of Compounds from Physalis angulata on Fatty Acid Synthesis and Glucose Metabolism in HepG2 Cells via the AMP-activated Protein Kinase Pathway

  • Hoa, Hoang Thai;Thu, Nguyen Thi;Dong, Nguyen Thuong;Oanh, Tran Thi;Hien, Tran Thi;Ha, Do Thi
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.200-206
    • /
    • 2020
  • The ability of the total extract from Physalis angulata; three fractions after partitioning with n-hexane, ethyl acetate (TBE), and water; and four withanolides (compounds 1 - 4) to phosphorylate 5'-adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells was evaluated. The TBE fraction (50 ㎍/mL) activated p-ACC and p-AMPK expression most strongly. Compounds 1 - 4 (10 μM) upregulated p-ACC expression at different levels. Compound 4 induced the most significant changes in p-AMPK expression, followed by 1 and 2. Sterol regulatory element-binding proteins (SREBPs) play a functional role in the transcriptional regulation of the lipogenic pathway, including fatty acid synthase (FAS) and ACC. The effects of compounds 2 and 4 (10 μM) on FAS and SREBP-1c expression under high glucose conditions (30 mM) in HepG2 cells were evaluated further. Both dose-dependently inhibited FAS and SREBP-1c expression as well as lipid accumulation (1 - 10 μM) were compared to high-concentration glucose control, which upregulated FAS and SREBP-1c. These results suggest that compounds 2 and 4 upregulate AMPK, suppress FAS and SREBP-1c, and have potential effects on glucose and lipid metabolism.

Scalable scheduling techniques for distributed real-time multimedia database systems (분산 실시간 멀티미디어 데이터베이스 시스템을 위한 신축성있는 스케줄링 기법)

  • Kim, Jin-Hwan
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.9-18
    • /
    • 2002
  • In this paper, we propose scalable scheduling techniques based on EDF to efficiently integrate hard real-time and multimedia soft real-time tasks in the distributed real-time multimedia database system. Hard tasks are guarangteed based on worst case execution times, whereas multimedia soft tasks are served based on mean execution times. This paper describes a served-based scheme for partitioning the CPU bandwidth among different task classes that coexist in the same system. To handle the problem of class overloads characterized by varying number of tasks and varying task arrival rates, thus scheme shows how to adjust the fraction of the CPU bandwidth assigned to each class. This scheme fixes the maximum time that each hard task can execute in the period of the server, whereas it can dynamically change the bandwidth reserved to each multimedia task. The proposed method is capable of minimizing the mean tardiness of multimedia tasks, without jeopardizing the schedulability of the hard tasks. The performance of this scheduling method is compared with that of similar mechanisms through simulation experiments.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

Isolation and Partial Characterization of Phytotoxic Mycotoxins Produced by Sclerotinia sp., a Potential Bioherbicide for the Control of White Clover(Trifoliorum repens)

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Jung, Won-Kwon;Bae, Soon-Do;Park, Sung-Tae;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • Sclerotinia sp. (isolate BWC98-105) causes stem blight and root rot in Leghum sp., and is presently being evaluated as a potential mycoherbicide for the control of Trifoliorium repens. Bioassays have shown that Sclerotinia sp. produces phytotoxic substance which is biologically active against T. repens. Two biologically active compounds, designated as compoundsI and II, were produced in vitro from the culture filtrate of BWC98-105 isolate Sclerotium sp. Compounds I and II were purified by means of liquid-liquid extraction and $C_{18}$ open column chromatography (300 ${\times}$ 30 mm, i.d). To determine the purity, the purified compounds were analyzed by RP-HPLC. The analytical RP-HPLC column was a TOSOH ODS-120T (150 ${\times}$ 4.6 mm i.d, Japan), of which the flow rate was set at 0.7 mL/min using the linear gradient solvent system initiated with 15 % methanol to 85 % methanol for 50 min with monitoring at 254 nm. Under these RP-HPLC conditions, compounds I and II eluted at 3.49 and 4.13 min, respectively. Compound II was found to be most potent and host specific. However, compound I had a unique antibiotic activity against phytopathogenic bacteria like bacterial leaf blight (Xanthomonas oryzae) on rice, where it played a less important role in producing toxicity on T. repens. No toxin activity was detected in the water fraction after partitioning with several organic solvents. However, toxin activity was detected in the ethyl acetate and butanol fractions. In the leaf bioassay using compound II, the disease first appeared within 4-5 h as water soaked rot, which subsequently developed into well-defined blight affecting the whole plant.

Nitrite Scavenging Ability and SOD-like Activity of a Sterol Glucoside form Chrysanthemum coronarium L. var. spatiosum (쑥갓 스테롤배당체의 아질산염소거작용 및 SOD 유사활성)

  • Cho, Min-Jung;Park, Mi-Jung;Lee, Heum-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.77-82
    • /
    • 2007
  • From the total methanolic extract of Chrysanthemum coronarium L. var. spatiosum (Compositae), nitrite scavenging ability and superoxide dismutase (SOD)-like activity were analyzed as antioxidative characteristics. After successive partitioning with chloroform, n-butanol, and water, the chloroform fraction showed the most significant nitrite scavenging ability with an $IC_{50}$ value of 39 ppm compared with the values of vitamin C and chlorogenic acid, 15 ppm and 36 ppm, respectively. The active fraction was subjected to silica gel and Sephadex LH-20 column chromatography, and the compound was isolated and identified as ${\beta}-sitosterol-O-{\beta}-D-glucoside$ using $^{1}H-NMR$ and $^{13}C-NMR$ spectral data. The glucoside was further hydrolyzed and confirmed as a glycosylated ${\beta}-sitosterol$. The compound and its aglycone, ${\beta}-sitosterol$, showed different nitrite scavenging and SOD-like activity. The $IC_{50}$ value of nitrite scavenging ability of the compound was 335 ppm at pH 1.5, while that of its aglycone was 41 ppm. As for the SOD-like activity, the $EC_{50}$ values of the sterol and the glucoside were 1,291 ppm and >2,000 ppm, respectively, compared with those of vitamin C and chlorogenic acid, 38 ppm and 449 ppm, respectively.

The Distribution Characteristics and Contamination of Heavy Metals in Soil from Dalcheon Mine (달천광산 토양 내 중금속의 존재형태 및 오염도)

  • Suh, Ji-Won;Yoon, Hye-On;Jeong, Chan-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The geochemical partitioning of arsenic in contaminated soils from a of wet land and tailing of the abandoned mine is examined. Chemical analysis and sequential extraction method by ultrasound-sonication extraction are applied to investigate the mobility and chemical existence conditions of arsenic as well as heavy metals. The results of this study showed that heavy metals concentration of tailings showed as a following order: Fe > As > Cu > Pb > Cr. The highest metal concentration was recognized in samples less than $63\;{\mu}m$ fraction in their particle sizes. Exchangeable and carbonate fractions in soil samples showed following Cu > As > Pb > Fe > Cr for tailings, and Fe > Pb > Cu > As > Cr for reservoir soils, respectively. Arsenic was bound as exchangeable fraction in tailings and its concentration appeared higher than those of the other metals. Thus, As can be easily dispersed into soil and water environments. The obtained results can be used to design soil remediation plan in the study area and require further detailed study to investigate severe environmental pollution of surface water as well as rivers with respect to heavy metals in terms of speciation analysis of toxic elements such as As and Cr.

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.