• Title/Summary/Keyword: Fraction images

Search Result 218, Processing Time 0.038 seconds

Proteomics of Liver Tissues of Bombina orientalis Following Exposure to Nonylphenol (Proteomics를 이용한 내분비계장애물질인 nonylphenol에 노출된 무당개구리의 단백질 발현 비교 연구)

  • Kim, Ho-Seung;Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.369-374
    • /
    • 2003
  • Nonylphenol (NP), an well known aquatic contaminant, has been known to induce abnormalities in various aquatic animals. In an effort to develop proteome in the study of aquatic contamination of NP and its impact on the amphibia, protein changes in liver tissues of Korean red bellied frog, Bombina orientalis was investigated following the NP exposure. NP was administered intraperitoneally to male B. orientalis at 10 mg/kg body weight. At 48 and 96h after the treatment, the frog livers were sampled, and the protein fraction was separated using two dimensional gel electrophoresis (2D/E) and visualized with Coomassie brilluant blue staining. The 2D/E Images of the tissue from the animals treated with NP showed marked changes of protein spots (about 20% of total protein spots). Analysis of the 50-60 separated spots allowed identification of the major protein changes in the overall pattern for the stressor (NP) by time (0,48 and 96 h). At 48h after treatment, 8 spots were increased and 12 spots were reduced. Then, at 96h after treatment, 10 spots were increased and 8 spots were reduced. In total, approximately 29% of liver proteins showed the altered expression following the NP treatment. It is suggested that protein expression was repressed by blocking of certain metabolisms at 48 hand induced by the synthesis of new proteins for adaptation at 96 h following NP exposure. This application for 2D/E analysis may show promise in searching biomarkers for environmental proteomics in amphibians.

Heart-Model-Based Automated Method for Left Ventricular Measurements in Cardiac MR: Comparison with Manual and Semi-automated Methods (자동화 방식 모델 기반 좌심방 파라미터 측정법: 수동 및 반자동 방식과의 비교)

  • Chae, Seung Hoon;Lee, Whal;Park, Eun-Ah;Chung, Jin Wook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.3
    • /
    • pp.200-206
    • /
    • 2013
  • Purpose : To assess the effect of applying an automated heart model based measurements of left ventricle (LV) and compare with manual and semi-automated measurements at Cardiovascular MR Imaging. Materials and Methods: Sixty-two patients who underwent cardiac 1.5T MR imaging were included. Steady state free precession cine images of 20 phases per cardiac cycle were obtained in short axis views and both 2-chamber and 4-chamber views. Epicardial and endocardial contours were drawn in manual, automated, and semi-automated ways. Based on these acquired contour sets, the end-diastolic (ED) and end-systolic (ES) volumes, ejection fraction (EF), systolic volume (SV) and LV mass were calculated and compared. Results: In EDV and ESV, the differences among three measurement methods were not statistically significant (P = .399 and .145, respectively). However, in EF, SV, and LV mass, the differences were statistically significant (P=.001, <001, <001, respectively) and the measured value from automated method tend to be consistently higher than the values from other two methods. Conclusion: An automatic heart model-based method grossly overestimate EF, SV and LV mass compared with manual or semi-automated methods. Even though the method saves a considerable amount of efforts, further manual adjustment should be considered in critical clinical cases.

Analysis of the Micro-Structural and Mechanical Properties in Human Femoral Head Trabecular Bone with and without Osteoporosis (대퇴골두 해면골의 미세구조 특성과 기계적 특성의 분석)

  • Won Ye-Yeon;Baek Myong-Hyun;Cui WenQuan;Chun KeyoungJin;Kim Man Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.519-523
    • /
    • 2004
  • This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using Micro-CT and finite element-model. 15 cored trabecular bone specimens with 20min of diameter were obtained from femoral heads with osteoporosis (T-score > -2.5 ) resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indices. Based on obtained micro-images(pixel size=21.31㎛), a FE-model was created to determine mechanical property indices. While non-osteoporosis group had increases trabecular thickness, bone volume, bone volume fraction, degree of anisotropy and trabecular number compared with those of non-osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indices, reaction force, apparent stress and young's modulus were 1ower in osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.

Reactive Ceramic Membrane Incorporated with Iron Oxide Nanoparticle for Fouling Control (산화철 나노입자 부착 반응성 세라믹 멤브레인의 막 오염 제어)

  • Park, Hosik;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.144-150
    • /
    • 2013
  • Hybrid ceramic membrane (HCM) processes that combined ozonation with a ceramic membrane (CM) or a reactive ceramic membrane (RM), an iron oxide nanoparticles (IONs) incorporated-CM were investigated for membrane fouling control. Alumina disc type microfiltration and ultrafiltration membranes doped with IONs by sintering method were tested under varying mass fraction of IONs. Scanning electron microscope (SEM) images showed that IONs were well-doped on the CM surface and doped IONs were approximately 50 nm in size. Change in the pure water permeability of RM was negligible compared to that of CM. These results indicate that IONs incorporation onto CM had little effect on CM performance in terms of the flux. Natural organic matter (NOM) fouling and fouling recovery patterns during HCM processes confirmed that the RM-ozonation process enhanced the destruction of NOM and reduced the extent of fouling more than the CM-ozonation process by hydroxyl radical formation in the presence of IONs on RM. In addition, analyses of NOM in the feed water and the permeate showed that the efficiency of membrane fouling control results from the NOM degradation during HCM processes; leading to removal and transformation of relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions.

Effect of Acetylene Mixing Rate on Synthesis of Carbon Nanotube (탄소나노튜브의 합성에 대한 아세틸렌 혼합 비율의 영향)

  • Kim, Jae-Hyun;Lee, Joo-Hee;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2014
  • In this study, experimental and numerical studies for the synthesis of carbon nanotube(CNT) in methane counterflow diffusion flame have been performed. Methane mixed with acetylene($C_2H_2$) was used as a fuel gas and ferrocene was used as a catalyst for synthesis of CNT. The major parameters was $C_2H_2$ mixing rate and mixing rates were 2 %, 6 %, and 10 %. Characteristics of CNT formation on grid were analyzed from SEM images. the chemical reaction mechanism adopted is GRI-MECH 3.0. Numerical results showed that flame temperature and CO mole fraction were increased with increasing acetylene mixing rate. Experimental results showed that the CNT synthesis in 2% acetylene mixture flame better than that of 6% and 10% acetylene mixture flames. It can be considered that 6% and 10% acetylene mixture flames generated the excessive carbon source and then it interrupted the supplement of the carbon source into ferrocene catalyst. It can be found that the supply of appropriate quantity of carbon source can make effect to synthesis of high purity of CNT.

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

Effect of Operating Variables on the Morphology of Precipitated Calcium Carbonate in a Slurry Bubble Reactor (슬러리 기포탑 반응기에서 침강성 탄산칼슘의 모폴로지에 대한 조업변수들의 영향)

  • Hwang, Jung-Woo;Lee, Yoong;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.124-131
    • /
    • 2010
  • Effects of $Ca(OH)_2$ concentration (0.16~0.64 wt%), surfactant concentration (2~16 wt%), total volumetric flow rate (3~6 L/min) and $CO_2$ volume fraction $(0.3{\sim}0.6)$ on morphology, crystal structure, mean particle diameter, aggregation and specific surface area of the precipitated $CaCO_3$ were investigated in the slurry bubble column reactor. Experiments were carried out in acrylic reactor ($0.11\;m-ID{\times}1.0\;m-high$) with a internal tube ($0.04\;m-ID{\times}1.0\;m-high$h). The reaction time of $CaCO_3$ synthesis decreased with adding Dispex N40 of the anionic surfactant. The reaction rate of $Ca(OH)_2$ increased with increasing the volumetric flow rate of $CO_2$. From SEM images, the single crystal of $CaCO_3$ increased with increasing the reaction rate in the saturated concentration of $Ca(OH)_2$ (0.16 wt %) and the concentration of Dispex N40 (2 wt%). The mean particle size of $CaCO_3$ varied with adding Dispex N40. In addition, the specific surface area of $CaCO_3$ increased with adding of surfactant (2 wt%) from $35m^2/g$ to $44m^2/g$ at the volumetric flow rate of $CO_2$ (0.9 L/min) and the concentration of $Ca(OH)_2$(0.64 wt %).

PTV Margins for Prostate Treatments with an Endorectal Balloon (전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진)

  • Kim, Hee-Jung;Chung, Jin-Beom;Ha, Sung-Whan;Kim, Jae-Sun;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.166-176
    • /
    • 2010
  • Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

The evaluation of the feasibility about prostate SBRT by analyzing interfraction errors of internal organs (분할치료간(Interfraction) 내부 장기 움직임 오류 분석을 통한 전립선암의 전신정위적방사선치료(SBRT) 가능성 평가)

  • Hong, soon gi;Son, sang joon;Moon, joon gi;Kim, bo kyum;Lee, je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • Purpose : To figure out if the treatment plan for rectum, bladder and prostate that have a lot of interfraction errors satisfies dosimetric limits without adaptive plan by analyzing MR image. Materials and Methods : This study was based on 5 prostate cancer patients who had IMRT(total dose: 70Gy) Using ViewRay MRIdian System(ViewRay, ViewRay Inc., Cleveland, OH, USA) The treatment plans were made on the same CT images to compare with the plan quality according to adaptive plan, and the Eclipse(Ver 10.0.42, Varian, USA) was used. After registrate the 5 treatment MR images to the CT images for treatment plan to analyze the interfraction changes of organ, we measured the dose volume histogram and the changes of the absolute volume for each organ by appling the first treatment plan to each image. Over 5 fractions, the total dose for PTV was $V_{36.25}$ Gy $${\geq_-}$$ 95%. To confirm that the prescription dose satisfies the SBRT dose limit for prostate, we measured $V_{100%}$, $V_{95%}$, $V_{90%}$ for CTV and $V_{100%}$, $V_{90%}$, $V_{80%}$ $V_{50%}$ of rectum and bladder. Results : All dose average value of CTV, rectum and bladder satisfied dose limit, but there was a case that exceeded dose limit more than one after analyzing the each image of treatment. After measuring the changes of absolute volume comparing the MR image of the first treatment plan with the one of the interfraction treatment, the difference values were maximum 1.72 times at rectum and maximum 2.0 times at bladder. In case of rectum, the expected values were planned under the dose limit, on average, $V_{100%}=0.32%$, $V_{90%}=3.33%$, $V_{80%}=7.71%$, $V_{50%}=23.55%$ in the first treatment plan. In case of rectum, the average of absolute volume in first plan was 117.9 cc. However, the average of really treated volume was 79.2 cc. In case of CTV, the 100% prescription dose area didn't satisfy even though the margin for PTV was 5 mm because of the variation of rectal and bladder volume. Conclusion : There was no case that the value from average of five fractions is over the dosimetric limits. However, dosimetric errors of rectum and bladder in each fraction was significant. Therefore, the precise delivery is needed in case of prostate SBRT. The real-time tracking and adaptive plan is necessary to meet the precision delivery.

  • PDF

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF